精英家教网 > 初中数学 > 题目详情
△ABC的边长AB=1厘米,AC=
2
厘米,BC=
3
厘米,则其外接圆的半径是
3
2
厘米
3
2
厘米
分析:根据勾股定理的逆定理求出∠CAB=90°,根据直角三角形外接圆的半径等于斜边的一半求出即可.
解答:解:
∵AB2+AC2=12+(
2
2=3,BC2=(
3
2=3,
∴AB2+AC2=BC2
∴∠CAB=90°,
∴△ABC的外接圆的半径等于AD(或BD或CD)的长,是
1
2
BC=
3
2
厘米,
故答案为:
3
2
厘米.
点评:本题考查了勾股定理的逆定理,直角三角形的性质,三角形的外接圆等知识点,注意:直角三角形的外接圆的半径等于斜边的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正△ABC的边长AB=2,以A为圆心的圆切BC于点D,交AB于点E,交AC于点F,则弧EF的长=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC的边长AB=2,面积为1,直线PQ∥BC,分别交AB、AC于P、Q,设AP=t,△APQ面积为S,则S关于t的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.

(1)△ABC的边与圆第一次相切时,点B运动了多少距离?
(2)从△ABC的边与圆第一次相切到最后一次相切,共经过多少时间?
(3)是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形各运动了多少时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案