Èçͼ£¬Õý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬µãOÎª×ø±êÔ­µã£¬µãAÔÚxÖáÉÏ£¬µãCÔÚyÖáÉÏ£¬µãB¡¢µãP£¨m£¬n£©ÔÚº¯Êýy=Êýѧ¹«Ê½£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£®¹ýµãP·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ãΪE¡¢F£®
£¨1£©ÇóBµã×ø±êºÍkµÄÖµ£»
£¨2£©µ±PµãµÄºá×ø±ê´óÓÚBµãµÄºá×ø±ê£¬ÇÒSËıßÐÎAEPG=Êýѧ¹«Ê½Ê±£¬ÇóPAËùÔÚµÄÖ±Ïß·½³Ì£»
£¨3£©Çóº¯Êýy=m+nµÄ×îСֵ£»
£¨×¢£º¿ÉʹÓÃÈçÏÂÆ½¾ùÖµ¶¨Àí£ºÈôa£¾0£¬b£¾0£¬Ôòa+b¡Ý2Êýѧ¹«Ê½£¬µ±ÇÒ½öµ±a=bʱµÈºÅ³ÉÁ¢£®£©

½â£º£¨1£©¡ßÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬
¡àAB=BC=3£¬
¼´Bµã×ø±êΪ£¨3£¬3£©£¬
°ÑB£¨3£¬3£©´úÈ뺯Êýy=ÖУ¬
µÃk=xy=9£»

£¨2£©ÉèP£¨a£¬£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=£¬
ÓÉSËıßÐÎAEPG=PG¡ÁPE=£¬µÃ£¨a-3£©•=£¬
½âµÃa=6£¬¹ÊP£¨6£¬£©£¬
ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P£¨6£¬£©£¬A£¨3£¬0£©Á½µã×ø±ê´úÈ룬
µÃ£¬
½âµÃ£¬
¡àÖ±ÏßPAµÄ½âÎöʽΪy=x-£»

£¨3£©¡ßµãP£¨m£¬n£©ÔÚË«ÇúÏßy=ÉÏ£¬
¡àn=£¬
¡ày=m+n=m+¡Ý2=6£¬
¡àº¯Êýy=m+nµÄ×îСֵΪ6£®
·ÖÎö£º£¨1£©¸ù¾ÝÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬¿ÉÇóBµã×ø±êΪ£¨3£¬3£©£¬°ÑBµã×ø±ê´úÈ뺯Êýy=ÖУ¬¿ÉÇók=9£»
£¨2£©ÉèP£¨a£¬£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=£¬ÓÉSËıßÐÎAEPG=PG¡ÁPE=£¬Áз½³ÌÇóa£¬ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P¡¢AÁ½µã×ø±ê´úÈë¿ÉÇóÖ±ÏßPAµÄ½âÎöʽ£»
£¨3£©µãP£¨m£¬n£©ÔÚË«ÇúÏßy=ÉÏ£¬¿ÉÖªn=£¬¹Êy=m+n=m+£¬ÔÙ¸ù¾Ýƽ¾ùÖµ¶¨ÀíÇó×îСֵ£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²é·´±ÈÀýº¯Êý½âÎöʽ¡¢Ò»´Îº¯Êý½âÎöʽµÄÇ󷨣¬×¢Òâͨ¹ý½â·½³ÌÇóµãµÄ×ø±ê£¬Áз½³Ì×éÇóÖ±ÏߵĽâÎöʽ£®Í¬Ê±Òª×¢ÒâÔËÓÃÊýÐνáºÏµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCµÄÃæ»ýΪ16£¬µãOÎª×ø±êÔ­µã£¬µãBÔÚº¯Êýy=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£¬µãP£¨m£¬n£©ÊǺ¯Êýy=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏÈÎÒâÒ»µã£¬¹ýµãP·Ö±ð×÷xÖá¡¢yÖᾫӢ¼Ò½ÌÍøµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£¬²¢Éè¾ØÐÎOEPFºÍÕý·½ÐÎOABC²»Öغϲ¿·ÖµÄÃæ»ýΪS£®£¨Ìáʾ£º¿¼ÂǵãPÔÚµãBµÄ×ó²à»òÓÒ²àÁ½ÖÖÇé¿ö£©
£¨1£©ÇóBµã×ø±êºÍkµÄÖµ£»
£¨2£©µ±S=8ʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Ð´³öSÓëmµÄº¯Êý¹ØÏµÊ½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Õý·½ÐÎOABC¡¢ADEFµÄ¶¥µãA£¬D£¬CÔÚ×ø±êÖáÉÏ£¬µãFÔÚABÉÏ£¬µãB¡¢EÔÚº¯Êýy=
4x
  (x£¾0)
µÄͼÏóÉÏ£®
£¨1£©ÇóÕý·½ÐÎOABCµÄÃæ»ý£»
£¨2£©ÇóEµã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCºÍÕý·½ÐÎADEFµÄ¶¥µãA£¬D£¬CÔÚ×ø±êÖáÉÏ£¬µãFÔÚABÉÏ£¬µãB£¬EÔÚº¯Êýy=
1
x
£¨x£¾0£©µÄͼÏóÉÏ£¬ÔòEµãµÄ×ø±êÊÇ
£¨
5
+1
2
£¬
5
-1
2
£©
£¨
5
+1
2
£¬
5
-1
2
£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCÓëÕý·½ÐÎODEFÊÇÎ»ËÆÍ¼ÐΣ¬OÎªÎ»ËÆÖÐÐÄ£¬ÏàËÆ±ÈΪ1£º
2
£¬µãAµÄ×ø±êΪ£¨1£¬0£©£¬ÔòOD=
2
2
£¬µãEµÄ×ø±êΪ
£¨
2
£¬
2
£©
£¨
2
£¬
2
£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎOABCµÄÃæ»ýΪ4£¬µãDÎª×ø±êÔ­µã£¬µãBÔÚº¯Êýy=
k
x
£¨k£¼0£¬x£¼0£©µÄͼÏóÉÏ£¬µãP£¨m£¬n£©ÊǺ¯Êýy=
k
x
£¨k£¼0£¬x£¼0£©µÄͼÏóÉÏÒìÓÚBµÄÈÎÒâÒ»µã£¬¹ýµãP·Ö±ð×÷xÖá¡¢£©£¬ÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE¡¢F£®
£¨1£©Éè¾ØÐÎOEPFµÄÃæ»ýΪs1£¬Çós1£»
£¨2£©´Ó¾ØÐÎDEPFµÄÃæ»ýÖмõÈ¥ÆäÓëÕý·½ÐÎOABCÖØºÏµÄÃæ»ý£¬Ê£ÓàÃæ»ý¼ÇΪs2£®Ð´³ös2ÓëmµÄº¯Êý¹ØÏµÊ½£¬²¢±êÃ÷mµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸