½â£º£¨1£©¡ßÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬
¡àAB=BC=3£¬
¼´Bµã×ø±êΪ£¨3£¬3£©£¬
°ÑB£¨3£¬3£©´úÈ뺯Êýy=

ÖУ¬
µÃk=xy=9£»
£¨2£©ÉèP£¨a£¬

£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=

£¬
ÓÉS
ËıßÐÎAEPG=PG¡ÁPE=

£¬µÃ£¨a-3£©•

=

£¬
½âµÃa=6£¬¹ÊP£¨6£¬

£©£¬
ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P£¨6£¬

£©£¬A£¨3£¬0£©Á½µã×ø±ê´úÈ룬
µÃ

£¬
½âµÃ

£¬
¡àÖ±ÏßPAµÄ½âÎöʽΪy=

x-

£»
£¨3£©¡ßµãP£¨m£¬n£©ÔÚË«ÇúÏßy=

ÉÏ£¬
¡àn=

£¬
¡ày=m+n=m+

¡Ý2

=6£¬
¡àº¯Êýy=m+nµÄ×îСֵΪ6£®
·ÖÎö£º£¨1£©¸ù¾ÝÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬¿ÉÇóBµã×ø±êΪ£¨3£¬3£©£¬°ÑBµã×ø±ê´úÈ뺯Êýy=

ÖУ¬¿ÉÇók=9£»
£¨2£©ÉèP£¨a£¬

£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=

£¬ÓÉS
ËıßÐÎAEPG=PG¡ÁPE=

£¬Áз½³ÌÇóa£¬ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P¡¢AÁ½µã×ø±ê´úÈë¿ÉÇóÖ±ÏßPAµÄ½âÎöʽ£»
£¨3£©µãP£¨m£¬n£©ÔÚË«ÇúÏßy=

ÉÏ£¬¿ÉÖªn=

£¬¹Êy=m+n=m+

£¬ÔÙ¸ù¾Ýƽ¾ùÖµ¶¨ÀíÇó×îСֵ£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²é·´±ÈÀýº¯Êý½âÎöʽ¡¢Ò»´Îº¯Êý½âÎöʽµÄÇ󷨣¬×¢Òâͨ¹ý½â·½³ÌÇóµãµÄ×ø±ê£¬Áз½³Ì×éÇóÖ±ÏߵĽâÎöʽ£®Í¬Ê±Òª×¢ÒâÔËÓÃÊýÐνáºÏµÄ˼Ï룮