【题目】在中,,过点作交射线于点,若是等腰三角形,则的大小为_________度.
【答案】或
【解析】
分两种情况考虑,∠BAC为锐角时,由AB=BD得∠D=∠DAB,由AB=AC得∠ABC=∠C,根据三角形外角性质可推出∠C=2∠D,根据直角三角形的两锐角互余可得∠C=60;同理,∠BAC为钝角时,可推出∠ADC=2∠C,根据直角三角形的两锐角互余可得∠C=30.
如图所示,若顶角∠BAC为锐角,则:
AB=BD,∠D=∠DAB
∵AB=AC∴∠ABC=∠C,
∴∠C=∠ABC=∠D+∠DAB=2∠D,
∵,
∴∠DAC=90,
∴∠C+∠D=3∠D=90,
∴∠D=30,
∴∠C=2∠D =60;
如图所示,若顶角∠BAC 为钝角,则:
AD=BD,∠B=∠DAB ,
∴∠ADC=∠B+∠DAB=2∠B,
∵AB=AC∴∠B=∠C,
∵,
∴∠DAC=90,
∴∠ADC+∠C=3∠C =90,
∴∠C =30.
故答案为:30或60.
科目:初中数学 来源: 题型:
【题目】如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层…第n层,第n层的小正方体的个数记为S.解答下列问题:
n | 1 | 2 | 3 | 4 | … |
S | 1 | 3 | … |
(1)按要求填写上表:
(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠CAB=90°,点A,点B的坐标分别为A(0,a),B(b,0),且a,b满足a2+b2﹣4a﹣8b+20=0,AC与x轴交于点D.
(1)求△AOB的面积;
(2)求证:点D为AC的中点;
(3)点E为x轴的负半轴上的动点,分别以OA,AE为直角边在第一、二象限作等腰直角三角形△OAN和等腰直角三角形△EAM,连接MN交y轴于点P,试探究线段OE与AP的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】人民商场销售某种冰箱,每台进价为2500元,市场调研表明:当每台销售价定为2900元时,平均每天能售出8台;每台售价每降低50元,平均每天能多售出4台.
设该种冰箱每台的销售价降低了x元.
(1)填表:
每天售出的冰箱台数(台) | 每台冰箱的利润(元) | |
降价前 | 8 | |
降价后 |
(2)若商场要想使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到世纪瑞士数学家欧拉(L.Euler,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若,那么叫做以为底的对数,记作:.比如指数式可以转化为,对数式可以转化为.我们根据对数的定义可得到对数的一个性质:(,,,);理由如下:设M=m,,则, ,由对数的定义得又+ .解决一下问题:
(1)将指数式转化为对数式___________;
(2)证明(,,,);
(3)拓展运用:计算=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4,n),B(4﹣n,﹣4)是直线y=kx+b和双曲线y=的两个交点.
(1)求两个函数的表达式;
(2)观察图象,直接写出不等式kx+b﹣≥0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)已知AE=8cm,CD=12cm,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com