精英家教网 > 初中数学 > 题目详情
如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.
(1)请说明:DE=DF;
(2)请说明:BE2+CF2=EF2
(3)若BE=6,CF=8,求△DEF的面积(直接写结果).
分析:(1)连接AD,根据等腰直角三角形性质和直角三角形斜边上中线性质求出∠B=∠C=∠BAD=∠DAC=45°,AD=BD,求出∠BDE=∠ADF,根据ASA证△BDE≌△ADF即可;
(2)根据AAS证△ADE≌△CDF,推出AE=CF,根据勾股定理求出即可;
(3)求出EF长,根据勾股定理求出DE和DF,根据三角形的面积公式求出即可.
解答:(1)证明:连接AD,
∵等腰直角三角形ABC,
∴∠C=∠B=45°,
∵D为BC的中点,
∴AD⊥BC,AD=BD=DC,AD平分∠BAC,
∴∠DAC=∠BAD=45°=∠B,∠ADC=90°,
∵DE⊥DF,
∴∠EDF=90°,
∴∠ADF+∠FDC=90°,∠FDC+∠BDE=90°,
∴∠BDE=∠ADF,
在△BDE和△ADF中
∠B=∠DAF
BD=AD
∠BDE=∠ADF

∴△BDE≌△ADF,
∴DE=DF.

(2)证明:∵△BDE≌△ADF,
∴BE=AF,
∵∠EDF=∠ADC=90°,
∴∠EDA+∠ADF=∠ADF+∠FDC=90°,
∴∠EDA=∠FDC,
在△ADE和△CDF中
∠EDA=∠FDC
∠EAD=∠C
DE=DF

∴△ADE≌△CDF,
∴CF=AE,
∴EF2=AE2+AF2=BE2+CF2
即BE2+CF2=EF2

(3)解:EF2=BE2+CF2=100,
∴EF=10,
根据勾股定理DE=DF=5
2

△DEF的面积是
1
2
DE×DF=
1
2
×5
2
×5
2
=25.
答:△DEF的面积是25.
点评:本题考查了等腰直角三角形性质,勾股定理,三角形的面积,直角三角形斜边上的中线性质等知识点的应用,关键是①小题构造三角形ADF,证△BDE和△ADF全等,②小题求出CF=AE,目比较典型,但有点难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP至P′,将△ABP绕点A旋转后,与△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC是等腰三角形,AB=AC,D为直线BC上一点,DE⊥AC,DF⊥AB,CH⊥AB,
(1)如图(1)若D为BC的中点,求证:DE+DF=CH.
(2)如图(2)若D为BC延长线上一点,其他条件不变,线段DE.DF.CH 之间有何数量关系,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等腰直角三角形,D为斜边AB上任意一点(不与A,B重合),连接CD,作EC⊥DC,且EC=DC,连接AE.
(1)求证:∠E+∠ADC=180°.
(2)猜想:当点D在何位置时,四边形AECD是正方形?说明理由.

查看答案和解析>>

同步练习册答案