精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC是等腰直角三角形,D为斜边AB上任意一点(不与A,B重合),连接CD,作EC⊥DC,且EC=DC,连接AE.
(1)求证:∠E+∠ADC=180°.
(2)猜想:当点D在何位置时,四边形AECD是正方形?说明理由.
分析:(1)由等腰直角三角形ABC的两腰相等的性质推知AC=CB,根据已知条件∠ACB=∠DCE=90°求得∠ACE=90°-∠ACD=∠DCB,再加上已知条件DC=EC,可以根据全等三角形的判定定理SAS判定△ACE≌△BCD;则由全等三角形的对应角相等的性质得出∠EAC=∠B=45°,然后根据四边形内角和为360°即可证明;
(2)利用等腰直角三角形的性质得出CD=AD=BD,∠CDA=90°,进而得出四边形AECD是平行四边形,以及平行四边形AECD是矩形,再利用EC=CD,则矩形AECD是正方形.
解答:(1)证明:如图1,
∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=CB,∠BAC=∠B=45°,
∵∠ACB=∠DCE=90°,
∴∠ACE=90°-∠ACD=∠DCB,
在△ACE和△BCD中,
 AC=BC  
∠ACE=∠BCD
EC=DC

∴△ACE≌△BCD(SAS),
∴∠EAC=∠B=45°,
∴∠EAB=∠EAC+∠CAB=45°+45°=90°,
∴∠E+∠ADC=360°-∠EAD-∠ECD=360°-90°-90°=180°.

(2)解:当点D在AB中点时,四边形AECD是正方形.理由如下:
如图2,∵△ABC是等腰直角三角形,点D在AB中点,
∴CD=AD=BD,∠CDA=90°,
∵EC⊥CD,
∴∠ECD=90°,
∴EC∥AD,
∵EC
.
AD,
∴四边形AECD是平行四边形,
∵∠ECD=90°,
∴平行四边形AECD是矩形,
∵EC=CD,
∴矩形AECD是正方形.
点评:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质以及正方形的判定和矩形的判定等知识.注意,在证明△ACE≌△BCD时,一定要找准相对应的边与角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案