精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.
分析:(1)由AD⊥BC,BD=DE,点E在AC的垂直平分线上,根据线段垂直平分线的性质,可得AE=EC,AB=AE,继而证得AB+BD=AE+DE=DC.
(2)易得△ABE是等边三角形,则可得△ABC是直角三角形,且∠BAD=∠C=30°,然后由含30°角的直角三角形的性质,证得结论.
解答:解:(1)AB+BD=DC.
证明:∵AD⊥BC,BD=DE,
∴AB=AE,BD=DE,
∵点E在AC的垂直平分线上,
∴AE=CE,
∴AB+BD=AE+DE=DC.

(2)DC=3BD.
证明:∵AB=AE,∠B=60°,
∴△ABE是等边三角形,
∴∠AEB=∠B=∠BAE=60°,
∵AE=EC,
∴∠C=∠CAE=
1
2
∠AEB=30°,
∴∠BAC=90°,∠BAD=30°,
在Rt△ABC中,BC=2AB,
在Rt△AABD中,AB=2BD,
∴BC=4BD,
∴DC=3BD.
点评:此题考查了线段垂直平分线的性质、含30°角的直角三角形的性质以及等边三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

同步练习册答案