精英家教网 > 初中数学 > 题目详情
如图,△ABC的3个顶点都在⊙O上,⊙O的直径AD=2,∠ABC=30°,则AC的长度为     
1.

试题分析:首先连接DC,利用圆周角定理可得∠ADC=∠ABC=30°,进而得到AC=AD,即可得到答案.
试题解析:连接DC,

∵AD是直径,
∴∠ACD=90°,
∵∠ABC=30°,
∴∠ADC=30°,
∴AC=AD(直角三角形中30°所对直角边等于斜边的一半),
∵AD=2,
∴AC=1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.

图1                         图2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为  (结果保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O重合,AC=2,求⊙O的半径r;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB=,BP=6,AP=1,求QC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.
(1)求证:DC为⊙O的切线;
(2)若⊙O的半径为3,AD="4" ,求AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,∠B=60°,∠C=70°,则∠BOD的度数是( )
A.90°B.100°C.110°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的半径为R,直径AB⊥CD以B为圆心,以BC为半径作弧CED与弧CAD围成的新月形的面积S.

查看答案和解析>>

同步练习册答案