·ÖÎö £¨1£©¢ÙÈçͼ»³ö¡°°ëÔÂÐÍ¡±µÄͼÐμ´¿ÉÅжϣ»¢Úµ±Ö±Ïßy=x+b¾¹ýµãB£¨6£¬0£©Ê±£¬b=-6£¬µ±Ö±ÏßÓë$\widehat{AEB}$ÏàÇÐʱ£¬ÓÉ$\left\{\begin{array}{l}{y=x+b}\\{£¨x-4£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½2x2+£¨2b-12£©x+b2-4b+12=0£¬ÓÉÌâÒâ¡÷=0£¬¿ÉµÃb2+4b-12=0£¬½âµÃb=2»ò-6£¬Óɴ˼´¿ÉÅжϣ»
£¨2£©ÎÊÌâÒ»£ºÒ×Öª¡°°ëÔÂÐÍ¡±µÄ´óÔ²°ë¾¶Îª2$\sqrt{2}$£¬Ð¡Ô²°ë¾¶Îª2£¬µ±¡°°ëÔÂÐÍ¡±ÓëyÖáÏàÇÐʱ£¬m=2$\sqrt{2}$-2£¬µ±¡°°ëÔÂÐÍ¡±ÓëÖ±Ïßy=-x+14ÏàÇÐʱ£¬Ò×ÖªÇеãΪ£¨10£¬4£©£¬´ËʱB£¨10£¬0£©£¬m=6£¬¼´¿ÉÍÆ³öµ±$2\sqrt{2}-2$£¼m£¼6ʱ£¬Ïß¶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£®
ÎÊÌâ¶þ£ºÈçͼ3ÖУ¬Ö±ÏßPG·ÖÏß¶ÎABÈýµÈ·Ö£¬¢Ùµ±Ö±ÏßPG¾¹ýQ£¨2£¬0£©Ê±£¬Ö±ÏßPGµÄ½âÎöʽΪy=-x+2£¬ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}{+y}^{2}=4}\end{array}\right.$½âµÃM£¨$\frac{5-\sqrt{7}}{2}$£¬$\frac{-1+\sqrt{7}}{2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬½âµÃH£¨$\frac{3-\sqrt{7}}{2}$£¬$\frac{\sqrt{7}+1}{2}$£©£¬¿ÉµÃµãPµÄºá×ø±êµÄ·¶Î§Îª$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®
¢Úµ±Ö±ÏßPG¾¹ýF£¨4£¬0£©Ê±£¬Í¬·¨¿ÉÇó£»
½â´ð ½â£º£¨1£©¢ÙÈçͼ1ÖУ¬¹Û²ìͼÏó¿ÉÖª£¬Ïß¶ÎABµÄ¡°°ëÔµ㡱ÓÐD£¬E£®
¹Ê´ð°¸ÎªD¡¢E£®![]()
¢ÚÈçͼ2ÖУ¬![]()
¢Ùµ±Ö±Ïßy=x+b¾¹ýµãB£¨6£¬0£©Ê±£¬b=-6£¬
¢Úµ±Ö±ÏßÓë$\widehat{AEB}$ÏàÇÐʱ£¬ÓÉ$\left\{\begin{array}{l}{y=x+b}\\{£¨x-4£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½2x2+£¨2b-12£©x+b2-4b+12=0£¬
ÓÉÌâÒâ¡÷=0£¬¿ÉµÃb2+4b-12=0£¬½âµÃb=2»ò-6£¬
×ÛÉÏËùÊö£¬ÔÚÖ±Ïßy=x+bÉÏ´æÔÚÏß¶ÎABµÄ¡°°ëÔµ㡱£¬bµÄȡֵ·¶Î§Îª-6¡Üb¡Ü2£®
-6£¼b¡Ü2£®
£¨3£©ÎÊÌâ1£ºÒ×Öª¡°°ëÔÂÐÍ¡±µÄ´óÔ²°ë¾¶Îª2$\sqrt{2}$£¬Ð¡Ô²°ë¾¶Îª2£¬
µ±¡°°ëÔÂÐÍ¡±ÓëyÖáÏàÇÐʱ£¬m=2$\sqrt{2}$-2£¬
µ±¡°°ëÔÂÐÍ¡±ÓëÖ±Ïßy=-x+14ÏàÇÐʱ£¬Ò×ÖªÇеãΪ£¨10£¬4£©£¬´ËʱB£¨10£¬0£©£¬m=6£¬
¡àµ±$2\sqrt{2}-2$£¼m£¼6ʱ£¬Ïß¶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£®
ÎÊÌâ2£ºÈçͼ3ÖУ¬![]()
¡ßÖ±ÏßPG·ÖÏß¶ÎABÈýµÈ·Ö£¬
¢Ùµ±Ö±ÏßPG¾¹ýQ£¨2£¬0£©Ê±£¬
Ö±ÏßPGµÄ½âÎöʽΪy=-x+2£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}{+y}^{2}=4}\end{array}\right.$½âµÃM£¨$\frac{5-\sqrt{7}}{2}$£¬$\frac{-1+\sqrt{7}}{2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬½âµÃH£¨$\frac{3-\sqrt{7}}{2}$£¬$\frac{\sqrt{7}+1}{2}$£©£¬
¡àµãPµÄºá×ø±êµÄ·¶Î§Îª$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®
¢Úµ±Ö±ÏßPG¾¹ýF£¨4£¬0£©Ê±£¬
Ö±ÏßPGµÄ½âÎöʽΪy=-x-4£¬Í¬·¨¿ÉµÃµãPµÄºá×ø±êµÄȡֵ·¶Î§Îª$\frac{{7+\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{9+\sqrt{7}}}{2}$£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãPµÄºá×ø±êµÄȡֵ·¶Î§Îª$\frac{{7+\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{9+\sqrt{7}}}{2}$£¬$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®
µãÆÀ ±¾Ì⿼²éÒ»´Îº¯Êý×ÛºÏÌâ¡¢Ô²¡¢Ò»Ôª¶þ´Î·½³Ì×é¡¢¸ùµÄÅбðʽµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓø¨ÖúÔ²½â¾öÎÊÌ⣬ѧ»áÓÃת»¯µÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»áÓ÷½³Ì×é½â¾öÓйؽ»µãÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 48¡ã | B£® | 40¡ã | C£® | 30¡ã | D£® | 24¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èý½ÇÐÎÈýÌõ±ßÉÏÖÐÏߵĽ»µã | B£® | Èý½ÇÐÎÈýÌõ±ßÉϸßÏߵĽ»µã | ||
| C£® | Èý½ÇÐÎÈýÌõ±ß´¹Ö±Æ½·ÖÏߵĽ»µã | D£® | Èý½ÇÐÎÈýÌõÄÚ½ÇÆ½·ÖÏߵĽ»µã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¢Ù¢Ú¢Û | B£® | ¢Ù¢Ú¢Ü | C£® | ¢Ú¢Û¢Ü | D£® | ¢Ù¢Ú¢Û¢Ü |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | -5 | C£® | 7 | D£® | -7 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{\sqrt{433}}{2}$ | B£® | $\frac{25}{4}$ | C£® | $\frac{25}{2}$ | D£® | $\frac{\sqrt{433}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com