精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,一次函数(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且

(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
解:(1)过点A作AD⊥x轴于D,

∵C的坐标为(﹣2,0),A的坐标为(n,6),    
∴AD=6,CD=n+2。
∵tan∠ACO=2,∴
解得:n=1。∴A(1,6)。
∴m=1×6=6。
∴反比例函数表达式为:
又∵点A、C在直线上,
,解得:
∴一次函数的表达式为:
(2)由得:
解得:
∵A(1,6),∴B(﹣3,﹣2)。
(3)点 E的坐标为(1,0)或(13,0)。
(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式。
(2)求出反比例函数和一次函数的另外一个交点即可。
(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可
①当AE⊥x轴时,即点E与点D重合,此时E1(1,0)。
②当EA⊥AC时,此时△ADE∽△CDA,则
又∵D的坐标为(1,0),∴E2(13,0)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.

(1)求点C的坐标;
(2)求一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,连接AO,△AOB的面积等于1.

(1)求b的值;
(2)如果反比例函数是常量,)的图像经过点A,求这个反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川泸州8分)如图,已知函数与反比例函数(x>0)的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C.

(1)求点C的坐标;
(2)若,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数的图象经过点(2,5),则k=        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正比例函数与反比例函数相交于点E(,2),若,则的取值范围在数轴上表示正确的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个点中,在反比例函数的图象上的是【   】
A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数的图象经过点(1,2),则此函数图象所在的象限是(  )
A.一、三B.二、四C.一、三D.三、四

查看答案和解析>>

同步练习册答案