精英家教网 > 初中数学 > 题目详情
有一个算式分子都是整数,满足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他们的分子依次是哪些数吗?
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反复若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右边的式子称为连分数.
可以猜想,随着替代次数的不断增加,右式最后的
1
x
对整个式子的值的影响将越来越小,因此可以根据需要,在适当时候把
1
x
忽略不计,例如,当忽略x=3+
1
x
中的
1
x
时,就得到x=3;当忽略x=3+
1
3+
1
x
中的
1
x
时,就得到x=3+
1
3
;如此等等,于是可以得到一系列分数;
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.
分析:首先确定式子
(  )
3
+
(  )
5
+
(  )
7
的取值范围,再将不等式去分母,得出121.275<35•(  )+21•(  )+15•(  )<122.22,利用除法运算的性质得出符合要求的值.
解答:解:由题意可知1.155<
(  )
3
+
(  )
5
+
(  )
7
<1.164.
∴121.275<35•(  )+21•(  )+15•(  )<122.22.
由于(  )的数都是整数,
∴35•(  )+21•(  )+15•(  )=122,而122被3除余2,122被5除余2,122被7除余3,
故三个括号内由左到右依次填:1、2、3,即
1
3
+
2
5
+
3
7
=1.16.
点评:此题主要考查了怎样估计一元二次方程的近似值,通过阅读材料获取信息是近几年中考中热点问题,已注意细心阅读发现规律才能解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若一个边长都是整数的三角形周长是15cm,则满足条件的三角形有
7
7
种.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省仪征市大仪中学七年级下学期期中考试数学卷 题型:填空题

若一个三角形三边都是整数,且两边长是2和3,则这个三角形第三边可以是______.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省仪征市七年级下学期期中考试数学卷 题型:填空题

若一个三角形三边都是整数,且两边长是2和3,则这个三角形第三边可以是______.

 

查看答案和解析>>

科目:初中数学 来源:《28.4 方程的近似解》2010年习题精选(解析版) 题型:解答题

有一个算式分子都是整数,满足≈1.16,那么你能算出他们的分子依次是哪些数吗?
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+,用3+代替x,得x=3+=3+.反复若干次用3+代替x,就得到x=形如上式右边的式子称为连分数.
可以猜想,随着替代次数的不断增加,右式最后的对整个式子的值的影响将越来越小,因此可以根据需要,在适当时候把忽略不计,例如,当忽略x=3+中的时,就得到x=3;当忽略x=3+中的时,就得到x=3+;如此等等,于是可以得到一系列分数;
3,3+,3+,3+,…,即3,=3.333…,≈3.3.=3.303 03…,….
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.

查看答案和解析>>

同步练习册答案