如图,在Rt△ABC中,AB=AC,∠BAC=90,O为BC的中点。
![]()
(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)
(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论。
(1)OA=OB=OC(2)△OMN的形状是等腰直角三角形,证明见解析
【解析】解:(1)点O到△ABC的三个顶点A、B、C的距离的关系是OA=OB=OC;
(2)△OMN的形状是等腰直角三角形,
证明:∵△ABC中,AB=AC,∠BAC=90°,O为BC中点,
∴OA=OB=OC,AO平分∠BAC,AO⊥BC,
∴∠AOB=90°,∠B=∠C=45°,∠BAO=∠CAO=45°,
∴∠CAO=∠B,
在△BOM和△AON中
AN=BM,∠CAO=∠B,OA=OB
∴△BOM≌△AON(SAS),
∴OM=ON,∠AON=∠BOM,
∵∠AOB=∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,即∠MON=90°,
∴△OMN是等腰直角三角形.(1)根据直角三角形斜边上中线性质推出即可;
(2)根据等腰三角形性质求出∠B=∠C=45°=∠BOA=∠CAO,根据SAS证△BOM≌△AON,推出OM=ON,∠AON=∠BOM,求出∠MON=90°,根据等腰直角三角形的判定推出即可.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com