精英家教网 > 初中数学 > 题目详情
(2011•黄冈模拟)直角梯形ABCD在直角坐标系中的位置如图所示,AD∥BC,∠DCB=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2个单位长度的速度运动,动点Q从点B出发,在线段BC上以每秒1个单位长得速度向点C运动,点P、Q分别从点D、B同时出发,当点Q运动到与点C重合时,点P随之停止运动.设运动时间为t(秒)
(1)设△BPQ的面积为S,求S与t之间的函数关系式.
(2)当t为何值时,以B,P,Q三点为顶点的三角形时等腰三角形?
(3)是否存在某一时刻t,使直线PQ恰为B、C两点的抛物线的对称轴?若不存在,能否改变其中一个点的运动速度,使某一时刻直线PQ是过B、C两点的抛物线的对称轴,并求出改变后的速度.
(4)是否存在某一时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
分析:(1)点P作PN⊥BC,垂足为N,则四边形PDCN为矩形,根据梯形的面积公式就可以利用t表示,就得到S与t之间的函数关系式.
(2)以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:
①若PQ=BQ,②若BP=BQ,③若PB=PQ.
在Rt△PMQ中根据勾股定理,就得到一个关于t的方程,就可以求出t.
(3)根据分别改变P的速度,Q的速度不变,以及改变Q的速度,P的速度不变分别得出即可.
(4)首先假设存在,然后再根据锐角三角函数的定义求出即可.
解答:解:(1)S=
1
2
×12×t=6t,(0<t≤16);

(2)由题意得:B(16,0),P(2t,12),Q(16-t,0),
∴BP=
(2t-16)2+144
,BQ=t,PQ=
(3t-16)2+144

①当BP=BQ时,
(2t-16)2+144
=t,此时方程无实数根;
②当BP=PQ时,
(2t-16)2+144
=
(3t-16)2+144

解得:t1=
32
5
,t2=0,
但当t=0时,B,Q两点重合,故t=
32
5

③当BQ=PQ时,
(3t-16)2+144
=t,此时方程无实数根;
综上所述,当t=
32
5
秒时,以B,P,Q三点为顶点的三角形是等腰三角形;

(3)不存在某一时刻t,使直线PQ恰为过B,C两点的抛物线的对称轴,
若改变P的速度,Q的速度不变.则CQ=BQ=8,Q点要远动8秒,此时DP=8,
故P的速度应该为
8
8
=1个单位/秒,
若改变Q的速度,P的速度不变.则DP=4,P点要远动4秒,此时QC=8=BQ,
故Q的速度应该为
8
4
=2个单位/秒,
因此,当P的速度改为1个单位/秒或Q的速度改为2个单位/秒时,直线PQ是过B,C两点的抛物线的对称轴;

(4)存在,
若PQ⊥BD,则∠DPQ=∠BDC,而tan∠BDC=
16
12
=
4
3

∴tan∠DPQ=
4
3

过Q作QM⊥DA于M,则QM=CD=12,PM=PD-OQ=2t-(16-t)=3t-16,
又tan∠DPQ=
QM
MP
=
12
MP

4
3
=
12
3t-16

解得:t=
25
3

∴t=
25
3
秒时,PQ⊥BD.
点评:此题主要考查了二次函数的综合应用以及直角梯形的问题,通过作高线可以转化为直角三角形与矩形的问题.并且要理解以B、P、Q三点为顶点的三角形是等腰三角形,应分①若PQ=BQ,②若BP=BQ,③若PB=PQ.三种情况进行讨论是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•黄冈模拟)将909070保留两个有效数字,用科学记数法表示为
9.1×105
9.1×105

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•黄冈模拟)分解因式:xy2-x3=
x(y+x)(y-x)
x(y+x)(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•黄冈模拟)如图,∠1=∠2,∠3=80°,则∠4=
80°
80°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•黄冈模拟)从多项式4x2-4xy+y2,2x+y,4x2-y2中,任选两个,其中一个作分子,另一个作分母,组成一个分式,写出化简后的结果
1
2x-y
1
2x-y

查看答案和解析>>

同步练习册答案