精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,抛物线的解析式是y=x2+1,点C的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.

(1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时;
①求t关于x的函数解析式和自变量x的取值范围;
②当梯形CMQP的两底的长度之比为1∶2时,求t的值.
(1)M(0,2)  (2)①x的取值范围是x≠1±,且x≠±2的所有实数  ②t=-8-2   t=2-8

解:(1)M(0,2).
(2)①当点P与点C重合时,梯形不存在,此时t=4,解得x=1±,当Q与B或A重合时,四边形为平行四边形,此时,x=±2,∴x的取值范围是x≠1±,且x≠±2的所有实数.②分两种情况讨论:Ⅰ.当CM>PQ时,则点P在线段OC上,t=-2.Ⅱ.当CM<PQ时,则点P在OC的延长线上,当x=-2时,得t=-8-2 ,∴当x=2时,得t=2-8.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.

(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线与x轴交于A(x1,0)、 B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根,则抛物线的解析式________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正确的是             (填写正确的序号)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.

(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为: y2=
(1)用x的代数式表示t,则t=__________;当0<x≤3时,y2与x的函数关系式为:y2=__________________;当3≤x<________时,y2=100;
(2)当3≤x<6时,求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并求此时的最大利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的顶点坐标是             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是
A.一直增大                    B.一直减小
C.先减小后增大                D.先增大后减小

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC是锐角三角形,BC=6,面积为12.点P在AB上,点Q在AC上.如图9-33,正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC的公共部分的面积为y.

(1)当RS落在BC上时,求x;
(2)当RS不落在BC上时,求y与x的函数关系式;
(3)求公共部分面积的最大值.

查看答案和解析>>

同步练习册答案