精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正确的是             (填写正确的序号)。
②③.

试题分析:由x=1时,y=a+b+C>0,即可判定①错误;由x=-1时,y=a-b+c<0,即可判定②正确;由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上得到c>0,又对称轴为x=?<1,得到2a+b<0,由此可以判定③正确;由对称轴为x=?>0即可判定④错误.
试题解析:①当x=1时,y=a+b+C>0,∴①错误;
②当x=-1时,y=a-b+c<0,∴②正确;
③由抛物线的开口向下知a<0,
与y轴的交点为在y轴的正半轴上,
∴c>0,
∵对称轴为x=?<1,
∴-b>2a,
∴2a+b<0,
∴③正确;
④对称轴为x=?>0,
∴a、b异号,即b>0,
∴abc<0,
∴④错误.
∴正确结论的序号为②③.
考点: 二次函数图象与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如果将抛物线向下平移3个单位,那么所得新抛物线的表达式是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=-3x2-x+4与坐标轴的交点个数是(  )
A.3B.2 C.1D.0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学习了函数的知识后,数学活动小组到文具店调研一种进价为每支2元的活动笔的销售情况。调查后发现,每支定价3元,每天能卖出100支,而且每支定价每下降0.1元,其销售量将增加10支。但是物价局规定,该活动笔每支的销售利润不能超过其进价的40%。设每支定价x元,每天的销售利润为y元。
(1)求每天的销售利润为y与每支定价x之间的函数关系式;
(2)如果要实现每天75元的销售利润,那么每支定价应为多少元?
(3)当每支定价为多少元时,可以使这种笔每天的销售利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,小李投掷铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式为什那么铅球运动过程中最高点离地面的距离____米。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,则池底的最大面积是(  )
A.600 m2B.625 m2C.650 m2D.675 m2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:

①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是________.(把正确的序号都填上).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线的解析式是y=x2+1,点C的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.

(1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时;
①求t关于x的函数解析式和自变量x的取值范围;
②当梯形CMQP的两底的长度之比为1∶2时,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

开口方向和开口大小与y=3x2相同,顶点在(0,3)的抛物线的关系式是________________.

查看答案和解析>>

同步练习册答案