精英家教网 > 初中数学 > 题目详情
学习了函数的知识后,数学活动小组到文具店调研一种进价为每支2元的活动笔的销售情况。调查后发现,每支定价3元,每天能卖出100支,而且每支定价每下降0.1元,其销售量将增加10支。但是物价局规定,该活动笔每支的销售利润不能超过其进价的40%。设每支定价x元,每天的销售利润为y元。
(1)求每天的销售利润为y与每支定价x之间的函数关系式;
(2)如果要实现每天75元的销售利润,那么每支定价应为多少元?
(3)当每支定价为多少元时,可以使这种笔每天的销售利润最大?
(1)y=﹣100x2+600x﹣800;(2)2.5;(3)2.8.

试题分析:(1)根据题意可求出y与每支定价x之间的函数关系式;
(2)设商品的定价为x元,由这种商品的售价每下降0.1元,其销售量就增加10支,列出等式求得x的值即可;
(3)设利润为y元,列出二次函数关系式,在售价不超过其进价的40%的范围内求得利润的最大值.
试题解析:(1)(100+),
由题意得,y=(x﹣2)(100+
=﹣100x2+600x﹣800
(2)当y=75时,
﹣100(x﹣3)2+100=75,
解得:x=2.5或x=3.5,
∵售价不能超过进价的40%,
∴x≤2×(1+40%),
即x≤2.8,
故x=2.5,
当定价为2.5元时,能实现每天75元的销售利润;       6分
(3)由(1)得y=﹣100(x﹣3)2+100,
∵﹣100<0,
∴函数图象开口向下,且对称轴为x=3,当x<3时,y随x的增大而增大
∵x≤2.8,
故当x=2.8时函数能取最大值,
考点: 二次函数的应用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正确的是             (填写正确的序号)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),点B的坐标为,与y轴交于点,顶点为D。

(1)求抛物线的解析式及顶点D坐标;
(2)联结AC、BC,求∠ACB的正切值;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.

(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1________y2(填“>”、“<”、“=”).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图,其对称轴x=-1,给出下列结果
>4ac,②abc>0,③2a+b=0,④a+b+c>0,⑤a-b+c<0,则正确的结论是(   )
A.①②③④B.②④⑤C.②③④D.①④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是
A.一直增大                    B.一直减小
C.先减小后增大                D.先增大后减小

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=3x2,y=-3x2,y=x2+3共有的性质是
A.开口向上B.对称轴是y轴
C.都有最高点D.y随x值的增大而增大

查看答案和解析>>

同步练习册答案