精英家教网 > 初中数学 > 题目详情
已知二次函数的图象如图,其对称轴x=-1,给出下列结果
>4ac,②abc>0,③2a+b=0,④a+b+c>0,⑤a-b+c<0,则正确的结论是(   )
A.①②③④B.②④⑤C.②③④D.①④⑤
D.

试题分析:∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,即b2>4ac>,所以①正确;
∵抛物线开口向上,
∴a>0,
∵对称轴为直线x=﹣<0,
∴b>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以②错误;
又∵对称轴为直线x=﹣=﹣1,
∴2a﹣b=0,所以③错误;
∵根据图像知,当x=1时,y>0,
∴a+b+c>0,所以④正确;
∵根据图像知,当x=-1时,y<0,
∴a-b+c<0,所以⑤正确.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6.现有两动点P、Q分别从A、C两点同时出发,点P以每秒1个单位长的速度由点A向点D做匀速运动,点Q沿折线CB—BA向点A做匀速运动.
(1)点P将要运行路径AD的长度为     ;点Q将要运行的路径折线CB—BA的长度为        .
(2)当点Q在BA边上运动时,若点Q的速度为每秒2个单位长,设运动时间为t秒.
①求△APQ的面积S关于t的函数关系式,并求自变量t的取范围;
②求当t为何值时,S有最大值,最大值是多少?
(3)如图2,若点Q的速度为每秒a个单位长(a≤),当t =4秒时:
①此时点Q是在边CB上,还是在边BA上呢?
②△APQ是等腰三角形,请求出a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为(  )
A.y=x2-1B.y=x2+1
C.y=(x-1)2D.y=(x+1)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学习了函数的知识后,数学活动小组到文具店调研一种进价为每支2元的活动笔的销售情况。调查后发现,每支定价3元,每天能卖出100支,而且每支定价每下降0.1元,其销售量将增加10支。但是物价局规定,该活动笔每支的销售利润不能超过其进价的40%。设每支定价x元,每天的销售利润为y元。
(1)求每天的销售利润为y与每支定价x之间的函数关系式;
(2)如果要实现每天75元的销售利润,那么每支定价应为多少元?
(3)当每支定价为多少元时,可以使这种笔每天的销售利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①.

⑴ 求CD的长及∠1的度数;
⑵ 设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?
⑶ 当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,请直接写出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:
①a>0 ②2a+b=0 ③a+b+c>0 ④当-1<x<3时,y>0其中正确的个数为(  )
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是(  )
A.有最小值-5、最大值0
B.有最小值-3、最大值6
C.有最小值0、最大值6
D.有最小值2、最大值6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周长;
(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;
(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的顶点坐标是(   )
A.(1,-2)B.(1,2)
C.(0,-2)D.(0,2)

查看答案和解析>>

同步练习册答案