精英家教网 > 初中数学 > 题目详情
为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,则池底的最大面积是(  )
A.600 m2B.625 m2C.650 m2D.675 m2
B
设矩形的一边长为x m,则其邻边为(50-x),若面积为S,则
S=x(50-x)=-x2+50x=-(x-25)2+625.
∵-1<0,∴S有最大值.
当x=25时,最大值为625.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.

(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线与x轴交于A(x1,0)、 B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根,则抛物线的解析式________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a–b+c<0;③b+2a<0;④abc>0,其中正确的是             (填写正确的序号)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.

(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线-1的图像向左平移2个单位,再向上平移1个单位,所得抛物线         .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

8.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值()
A.1 B.2C.3D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.

(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.

查看答案和解析>>

同步练习册答案