精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠C=90°,CA=5,CB=12,以C为圆心,CA为半径作圆交AB于D,求BD的长.

解:过C作CE⊥AB于E,
可得E为AD的中点,
在Rt△ABC中,AC=5,BC=12,
根据勾股定理得:AB==13,
∵S△ABC=AC•BC=AB•CE,
∴CE==
在Rt△ACE中,根据勾股定理得:AE==
在Rt△BCE中,根据勾股定理得:BE==
则BD=BE-DE=BE-AE=
分析:过C作CE垂直于AD,由垂径定理得到E为AD的中点,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,进而利用面积法求出CE的长,在直角三角形ACE中,利用勾股定理求出AE的长,即为DE的长,在直角三角形CEB中,利用勾股定理求出BE的长,由BE-DE即可求出BD的长.
点评:此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案