精英家教网 > 初中数学 > 题目详情
(2012•常州)在平面直角坐标系xOy中,已知动点P在正比例函数y=x的图象上,点P的横坐标为m(m>0),以点P为圆心,
5
m为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(点D在点C的上方).点E为平行四边形DOPE的顶点(如图).
(1)写出点B、E的坐标(用含m的代数式表示);
(2)连接DB、BE,设△BDE的外接圆交y轴于点Q(点Q异于点D),连接EQ、BQ,试问线段BQ与线段EQ的长是否相等?为什么?
(3)连接BC,求∠DBC-∠DBE的度数.
分析:(1)如图①所示,过点P作PM⊥x轴于点M,构造直角三角形,利用垂径定理与勾股定理求出点B的坐标;同理可求得点D的坐标,过点D作DR⊥PE于点R,则△EDR为等腰直角三角形,从而求出点E的坐标;
(2)如图②所示,首先推出△BDE为直角三角形,由圆周角定理可知,BE为△BDE外接圆的直径,因此∠BQE=90°;然后证明Rt△EQK∽Rt△QBO,通过计算线段之间的比例关系,可以得到这两个三角形全等,所以BQ=EQ;
(3)如图②所示,本问要点是证明Rt△BDE∽Rt△BOC,得到∠OBC=∠DBE,进而计算可得∠DBC-∠DBE=45°.
解答:解:(1)如图①,连接PB,过点P作PM⊥x轴于点M.
由题意可知,OM=PM=m,PB=
5
m.
在Rt△PBM中,由勾股定理得:
BM=
PB2-PM2
=
(
5
m)
2
-m2
=2m,
∴OB=OM+BM=m+2m=3m,
∴B(3m,0);
连接PD,过点P作PN⊥y轴于点N,同理可求得DN=2m,OD=3m.
过点D作DR⊥PE于点R,
∵平行四边形DOPE,∴∠ODE+∠DOP=180°;
由题意可知,∠DOP=45°,∴∠ODE=135°,
∴∠EDR=45°,即△EDR为等腰直角三角形,
∴ER=DR=OM=m,EM=ER+RM=ER+OD=m+3m=4m,
∴E(m,4m).

(2)相等.理由如下:
依题意画出图形,如图②所示.
由(1)知,∠ODE=∠BDO+∠BDE=135°,
又OB=OD=3m,即△OBD为等腰直角三角形,∴∠BDO=45°,
∴∠BDE=90°,即△BDE为直角三角形.
由圆周角定理可知,BE为△BDE外接圆的直径,∴∠BQE=90°.
过点E作EK⊥y轴于点K,则有EK=m,OK=4m.
∵∠BQE=90°,∴∠EQK+∠BQO=90°,又∠BQO+∠QBO=90°,
∴∠EQK=∠QBO.
∴Rt△EQK∽Rt△QBO,
EK
OQ
=
QK
OB
,即
m
OQ
=
4m-OQ
3m
,解得OQ=m或OQ=3m,
∵点Q与点D不重合,∴OQ=m,
∴OQ=EK,即相似比为1,此时两个三角形全等,
∴BQ=EQ.

(3)如图②所示,连接BC.
由(1)可知,如图①,CD=2DN=4m,∴OC=CD-OD=m.
由(2)可知,△BDE为直角三角形,△EDK与△BDO均为等腰直角三角形,
∴DE=
2
EK=
2
m,BD=
2
OB=3
2
m.
在Rt△BDE与Rt△BOC中,OC=m,OB=3m,DE=
2
m,BD=3
2
m,
DE
OC
=
BD
OB
,∴Rt△BDE∽Rt△BOC,
∴∠OBC=∠DBE,
∴∠DBC-∠DBE=(∠OBD+∠OBC)-∠DBE=∠OBD=45°.
点评:本题综合考查了平面几何图形的若干重要性质,包括圆的垂径定理、圆周角定理、相似三角形的判定与性质、勾股定理、等腰直角三角形、平行四边形等,涉及考点较多,有一定的难度.另外需要注意解题方法多样,例如:第(1)问中求点E坐标也可采用代数方法解决,点E是直线DE(y=x+3m)与直线PE(x=m)的交点;第(3)问中也可以由三角函数tan∠OBC=tan∠DBE直接得到∠OBC=∠DBE.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•常州)在平面直角坐标系xOy中,已知点P(3,0),⊙P是以点P为圆心,2为半径的圆,若一次函数y=kx+b的图象过点A(-1,0)且与⊙P相切,则k+b的值为
±
2
3
3
±
2
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常州)在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).
按下列要求画图:以O为位似中心,将△ABC向y轴左侧按比例尺2:1放大得△ABC的位似图形△A1B1C1,并解决下列问题:
(1)顶点A1的坐标为
(-2,0)
(-2,0)
,B1的坐标为
(-6,0)
(-6,0)
,C1的坐标为
(-4,-2)
(-4,-2)

(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼接成一个平行四边形(非正方形),写出符合要求的变换过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常州)在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别,从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二只球并记录颜色,求两次都摸出白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常州模拟)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2012次变换后所得的A点坐标是(  )

查看答案和解析>>

同步练习册答案