精英家教网 > 初中数学 > 题目详情
(2002•烟台)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.
(1)求该反比例函数的解析式;
(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;
(3)求△AOB的面积.

【答案】分析:(1)由S△AOC=xy=2,设反比例函数的解析式y=,则k=xy=4;
(2)由于反比例函数的性质是:在x<0时,y随x的增大而减小,-a>-2a,则y1<y2
(3)连接AB,过点B作BE⊥x轴,交x轴于E点,通过分割面积法S△AOB=S△AOC+S梯形ACEB-S△BOE求得.
解答:解:(1)∵S△AOC=2,
∴k=2S△AOC=4;
∴y=

(2)∵k>0,
∴函数y在各自象限内随x的增大而减小;
∵a>0,
∴-2a<-a;
∴y1<y2

(3)连接AB,过点B作BE⊥x轴,

S△AOC=S△BOE=2,
∴A(a,),B(2a,);
S梯形=
∴S△AOB=S△AOC+S梯形ACEB-S△BOE=3.
点评:此题重点检查函数性质的应用和图形的分割转化思想.同学们要熟练掌握这类题型.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•烟台)如图,过点C的直线l∥x轴,抛物线y=ax2+bx+c(a<0)过A(-1,0),C(0,1)两点,且截直线l所得线段CD=
(1)求该抛物线的解析式;
(2)若点M(m,t)(m<0,t>0)在抛物线上,MN∥x轴,且与该抛物线的另一交点为N,问:是否存在实数t,使得MN=2AO?如果存在,求出t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2002•烟台)如图,过点C的直线l∥x轴,抛物线y=ax2+bx+c(a<0)过A(-1,0),C(0,1)两点,且截直线l所得线段CD=
(1)求该抛物线的解析式;
(2)若点M(m,t)(m<0,t>0)在抛物线上,MN∥x轴,且与该抛物线的另一交点为N,问:是否存在实数t,使得MN=2AO?如果存在,求出t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2002•烟台)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.
(1)求该反比例函数的解析式;
(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:2002年山东省烟台市中考数学试卷(解析版) 题型:选择题

(2002•烟台)如图所示,直线l的解析式是( )

A.y=x+2
B.y=-2x+2
C.y=x-2
D.y=-x-2

查看答案和解析>>

同步练习册答案