精英家教网 > 初中数学 > 题目详情
请阅读下列材料?:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为
7
.问题得到解决.?
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
分析:首先根据旋转的性质得出△BPC≌△BP′A,利用AP′=PC=1,BP=BP′=
2
得出△AP′P是直角三角形,再利用过点B作BE⊥AP′交AP′的延长线于点E,利用勾股定理得出AB的长.
解答:解:如图3,
将△BPC绕点B逆时针旋转90°,得△BP′A,
则△BPC≌△BP′A.
∴AP′=PC=1,BP=BP′=
2

连结P P′,
在Rt△BP′P中,
∵BP=BP′=
2
,∠PBP′=90°,
∴P P′=2,∠BP′P=45°.
在△AP′P中,AP′=1,P P′=2,AP=
5

∵12+22=(
5
2
即AP′2+PP′2=AP2
∴△AP′P是直角三角形,即∠A P′P=90°.
∴∠AP′B=135°.
∴∠BPC=∠AP′B=135°.
如图3,过点B作BE⊥AP′交AP′的延长线于点E.
∴∠EP′B=45°.∴EP′=BE=1.∴AE=2.
∴在Rt△ABE中,由勾股定理,得AB=
5

∴∠BPC=135°,正方形边长为
5
点评:此题主要考查了旋转的性质以及勾股定理与逆定理等知识,根据已知的点的坐标△AP′P是直角三角形是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得y=
12-2x
3
=4-
2
3
x
,(x、y为正整数)∴
x>0
12-2x>0
则有0<x<6.又y=4-
2
3
x
为正整数,则
2
3
x
为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入y=4-
2
3
x=2

∴2x+3y=12的正整数解为
x=3
y=2

问题:
(1)请你写出方程2x+y=5的一组正整数解:
 

(2)若
6
x-2
为自然数,则满足条件的x值有
 
个;
A、2      B、3       C、4        D、5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°的方向作直线运动,…,如图1所示,
精英家教网
问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E.
请你参考小贝的思路解决下列问题:
(1)P点第一次与D点重合前与边相碰
 
次;P点从A点出发到第一次与D点重合时所经过的路径的总长是
 
cm;
(2)近一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB:AD的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

24、阅读下列材料
(1)学校组织同学们去参观博物馆,一位解说员指着一块化石说:“这块化石距今已有700003年了.”小明问:“为什么您知道的这么准确呢”解说员说:“因为3年前,一位学者来我们这里,并考察了这块化石,说它距当时已有70万年了,因此,3年后就应该距今700003年啦!”
(2)小刚和小军在一个问题上发生了争执.小刚说:“6845精确到百位应该是6.8×103.”而小军却说:“6845先精确到十位是6.85×103,再精确到百位,应该是6.9×103.”
请你用所学的知识分别对(1)、(2)这两段对话进行正确的评价.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江省八里店一中七年级第二学期期中考试数学试卷(带解析) 题型:解答题

阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.
例:由2x+3y=12,得,(x、y为正整数)
,解得0<x<6.
为正整数,则为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入
∴2x+3y=12的正整数解为
问题:
(1)请你写出方程2x+y=5的一组正整数解:  
(2)若为自然数,则满足条件的x值有  个;

A.2B.3C.4D.5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>

科目:初中数学 来源:2011-2012年重庆万州区岩口复兴学校七年级下期中考试数学试卷(解析版) 题型:解答题

阅读下列材料,然后解答后面的问题。

我们知道方程有无数组解,但在实际生活中我们往往只需要求出其正整数解。例:由,得,(为正整数)        则有.

为正整数,则为正整数.

由2与3互质,可知:为3的倍数,从而,代入.

的正整数解为

问题:(1)请你写出方程的一组正整数解:            

(2)若为自然数,则满足条件的值有­             

A、2      B、3       C、4        D、5

(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

 

查看答案和解析>>

同步练习册答案