精英家教网 > 初中数学 > 题目详情

已知:二次函数y=数学公式的图象与x轴从左到右的两个交点依次为A、B,与y轴交点为C;
(1)求A、B、C三点的坐标;
(2)求过B、C两点的一次函数的解析式;
(3)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并求出自变量x的取值范围;
(4)是否存在这样的点P,使得PO=AO?若存在,求出点P的坐标;若不存在说明理由.

解:(1)由题意,在y=x2-中,令x=0及y=0
可得:A(4,0),B(6,0),C(0,6);

(2)设一次函数的解析式为:y=kx+b;
将B(6,0)、C(0,6)代入上式,得:

解得
∴y=-x+6;

(3)根据题意得S△POA=×4×y,
∴y=-x+6;
∴S△POA=-2x+12;
∴0≤x<6;

(4)∵|OB|=|OC|,∠COB=90°;
∴△BOC是等腰直角三角形;
当OP⊥BC时,OP最短;
OP=BC==3=
而OA=4,
>4;
∴不存在这样的点P,使得OP=AO.
分析:(1)抛物线的解析式中,令x=0可求得C点坐标,令y=0可求得A、B的坐标;
(2)已知了B、C的坐标,用待定系数法求解即可;
(3)根据直线BC的解析式可用x表示出P点的纵坐标,以OA为底,P点纵坐标的绝对值为高即可得到△OAP的面积,由此可求得S、x的函数关系式;
(4)易知△OBC是等腰Rt△,且直角边长为6,因此点O到BC的距离为3(即),显然这个距离要大于4,因此P点的坐标无论去何值,都不存在OP=OA的情况.
点评:此题考查了二次函数与坐标轴交点坐标的求法、一次函数解析式的确定、图形面积的计算方法等重要知识点,综合性较强,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:2013年浙江省杭州市西湖区中考一模数学试卷(带解析) 题型:解答题

已知:二次函数中的满足下表:


 

0
1
2
3
 

 
0




 
(1)求的值;
(2)根据上表求时的的取值范围;
(3)若两点都在该函数图象上,且,试比较的大小.

查看答案和解析>>

科目:初中数学 来源:2007年上海市普陀区中考数学二模试卷(解析版) 题型:解答题

已知,二次函数y=的图象与x轴相交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,图象与y轴交于点C,OB=2OA;
(1)求二次函数的解析式;
(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中二次函数图象的顶点D;
(3)过(2)中的点E的直线y=与(1)中的抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为M′、N′,点P为线段MN上一点,点P的横坐标为t,过点P作平行于y轴的直线交(1)中所求抛物线于点Q,是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出满足条件的t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(1999•昆明)已知:二次函数y=的图象与x轴从左到右的两个交点依次为A、B,与y轴交点为C;
(1)求A、B、C三点的坐标;
(2)求过B、C两点的一次函数的解析式;
(3)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并求出自变量x的取值范围;
(4)是否存在这样的点P,使得PO=AO?若存在,求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年浙教版初中数学九年级上2.1二次函数练习卷(解析版) 题型:选择题

已知:二次函数中的x、y满足下表:

0

1

2

3

0

m的值为(   )

A.-2           B.5           C.1         D.0

 

查看答案和解析>>

科目:初中数学 来源:2012-2013学年上海市闸北区中考一模数学试卷(解析版) 题型:解答题

(本题满分10分 第(1)小题4分,第(2)小题6分)

已知:二次函数≠0的图像经过点(3,5)、(2,8)、(0,8).

(1)求这个二次函数的解析式;

(2)已知抛物线≠0,≠0,且满足≠0,1,则我们称抛物线互为“友好抛物线”,请写出当时第(1)小题中的抛物线的友好抛物线,并求出这友好抛物线的顶点坐标.

 

查看答案和解析>>

同步练习册答案