精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系xoy中,A、B是x轴上两点,以AB为直径的圆交y轴于C点,设过A、B、C三点的抛物线解析式为y=x2-px+q,若方程x2-px+q=0两根的倒数和为-2
(1)求此抛物线的解析式;
(2)设平行于x轴的直线交该抛物线于E、F两点,问是否存在以线段EF为直径的圆恰好与x轴相切?若存在,求出此圆的圆心和半径;若不存在,说明理由.

解:(1)由题意,设A(x1,0),B(x2,0),C(0,q),
∵OA=-x1,OB=x2,又CO⊥AB,
∴CO2=AO•OB,即q2=-x1x2
又∵x1,x2是方程x2-px+q=0的两根,
∴x1•x2=q,
∴q2=-q,
∴q1=-1,q2=0(舍去),
∴q=-1,
∵x1,x2是方程x2-px+q=0的两根,
∴x1+x2=p,
又∵q=-1,
∴x1x2=-1,
+====-2,
∴p=2,
∴所求抛物线的关系式为y=x2-2x-1;

(2)存在,理由为:
抛物线的对称轴为直线x=1,
设满足题意圆的半径为|r|,可得出E(1+|r|,|r|)或F(1-|r|,|r|),
将E坐标代入抛物线得:|r|=(1+|r|)2-2(1+|r|)-1,
解得:|r|=2,
∴E(3,2),F(-1,2),
∴线段EF的中点坐标为(1,2),即为此时圆心坐标.
分析:(1)由于AB是圆的直径,根据相交弦定理的推论可得OC2=OA•OB,若设A(x1,0),B(x2,0),那么q2=-x1x2,根据根与系数的关系知x1x2=q,联立两式即可求得q的值,根据韦达定理可求得方程的两根之和与两根之积,即可表示出它们的倒数和,已知了倒数和为2,即可求得p的值,由此确定抛物线的解析式;
(2)存在以线段EF为直径的圆恰好与x轴相切,理由为:求出抛物线的对称轴,设出圆的半径为|r|,根据对称轴得到E与F的坐标,将E坐标代入抛物线解析式求出r的值,进而确定出此时圆心坐标.
点评:此题考查了二次函数综合题,涉及的知识有:相交弦定理,坐标与图形性质,根与系数的关系,二次函数的性质,是一道综合性较强的压轴题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,⊙M与y轴相切于点C,与x轴交于A(x1,0),B(x2,0)两点,其中x1,x2是方程x2-10x+16=0的两个根,且x1<x2,连接MC,过A、B、C三点的抛物线的顶点为N.
(1)求过A、B、C三点的抛物线的解析式;
(2)判断直线NA与⊙M的位置关系,并说明理由;
(3)一动点P从点C出发,以每秒1个单位长的速度沿CM向点M运动,同时,一动点Q从点B出发,沿射线BA以每秒4个单位长度的速度运动,当P运动到M点时,两动点同时停止运动,当时间t为何值时,以Q、O、C为顶点的三角形与△PCO相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸翻折后,使点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB′C=
3
4

(1)求出B′点的坐标;
(2)求折痕CE所在直线的解析式;
(3)作B′G∥AB交CE于G,已知抛物线y=
1
8
x2-
14
3
通过G点,以O为圆心OG的长为精英家教网半径的圆与抛物线是否还有除G点以外的交点?若有,请找出这个交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已如:如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,AB为⊙C的直径,PA切⊙O于点A,交x轴的负半轴于点P,连接PC交OA于点D.
(1)求证:PC⊥OA;
(2)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形
POCA的面积为S,求S与点P的横坐标x之间的函数关系式;
(3)在(2)的情况下,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB,若存在,直接写出点P的坐标(不写过程);若不存在,简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在直角坐标系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四个点.
(1)顺次连接A,B,C,D四个点组成的图形是什么图形?
(2)画出(1)中图形分别向上5个单位向右3个单位后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,A的坐标为(a,0),D的坐标为(0,b),且a、b满足
a+2
+(b-4)2=0

(1)求A、D两点的坐标;
(2)以A为直角顶点作等腰直角三角形△ADB,直接写出B的坐标;
(3)在(2)的条件下,当点B在第四象限时,将△ADB沿直线BD翻折得到△A′DB,点P为线段BD上一动点(不与B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,请探究:PD、PN、BN之间的数量关系.

查看答案和解析>>

同步练习册答案