精英家教网 > 初中数学 > 题目详情
阅读题:
分解因式:x2+2x-3
解:原式=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.
请体会配方法的特点,然后用配方法解决下列问题:
在实数范围内分解因式:4a2+4a-1.
分析:首先将原式配方,进而利用平方差公式分解因式即可.
解答:解:4a2+4a-1=(2a+1)2-2=(2a+1-
2
)(2a+1+
2
).
点评:此题主要考查了配方法的应用以及实属范围内分解因式,正确配方是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、(阅读理解题)
分解因式:x2-120x+3456
分析:由于常数项数值较大,则采用x2-120x变为差的平方的形式进行分解,这样简便易行:
x2-120x+3456=x2-2×60x+3600-3600+3456=(x-60)2-144=(x-60+12)(x-60-12)=(x-48)(x-72)
请按照上面的方法分解因式:x2+42x-3528.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

24、先阅读下列因式分解的过程,再回答所提出的问题:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=
(1+ax)n+1

(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答题要求:请将第(1)问的答案填写在题中的横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读理解下列题,再按要求完成问题:
例题:解一元二次不等式6x2-x-2>0
解:把6x2-x-2分解因式得:6x2-x-2=(3x-2)(2x+1)
又6x2-x-2>0所以(3x-2)(2x+1)>0由有理数乘法法则“两数相乘,同号得正”,有
(1)
3x-2>0
2x+1>0
或 (2)
3x-2<0
2x+1<0
,解不等式组(1)得x>
2
3

解不等式(2),得x<-
1
2
因此,一元二次不等式6x2-x-2>0的解集为x>
2
3
x<-
1
2

问题;根据阅读解不等式:
5x+1
2x-3
<0

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读题:因式分解:1+x+x(x+1)+x(x+1)2
解:原式=(1+x)+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
=(1+x)[(1+x)+x(1+x)]
=(1+x)2(1+x)
=(1+x)3
(1)本题提取公因式几次?
(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?

查看答案和解析>>

同步练习册答案