精英家教网 > 初中数学 > 题目详情
5.已知x、y是实数,并且$\sqrt{3x+1}$+y2-6y+9=0.则(xy)2015的值是-1.

分析 已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出原式的值.

解答 解:∵$\sqrt{3x+1}$+y2-6y+9=$\sqrt{3x+1}$+(y-3)2=0,
∴$\left\{\begin{array}{l}{3x+1=0}\\{y-3=0}\end{array}\right.$,
解得:x=-$\frac{1}{3}$,y=3,
则原式=-1.
故答案为:-1.

点评 此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图所示,在平面直角坐标系中,点A、B的坐标分别为(4,2)和(3,0),将△OAB绕原点O按逆时针方向旋转90°到△OA′B′.
(1)画出△OA′B′;
(2)点A′的坐标为(-2,4);
(3)求BB′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.小明随机调查了本班5名同学的家庭一个月的平均用水量(单位:t),记录如下:9,11,8,6,15,则这组数据的中位数是9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.我市某校在推进体育学科新课改的过程中,开设的选修课有A:篮球,B:排球,C:羽毛球,D:乒乓球,学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).

(1)求出该班的总人数,并补全频数分布直方图;
(2)求出B,D所在扇形的圆心角的度数和;
(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水“五水共治”的重大决策,某中学为了提高学生参与“五水共治”的积极性举行了“五水共治”知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
(1)这次知识竞赛共有多少名学生?
(2)浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水“五水共治”的重大决策,“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.点A(-2,3)关于x轴的对称点A′的坐标为(-2,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是(  )
A.P在圆内B.P在圆上C.P在圆外D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.
(1)求k的取值范围;
(2)当k=1时,设方程的两根分别为x1,x2,求x12+x22的值;
(3)若k为正整数,且该方程的根都是整数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:$\frac{\frac{1}{2}}{1+\frac{1}{2}}$+$\frac{\frac{1}{3}}{(1+\frac{1}{2})×(1+\frac{1}{3})}$+$\frac{\frac{1}{4}}{(1+\frac{1}{2})×(1+\frac{1}{3})×(1+\frac{1}{4})}$+…+$\frac{\frac{1}{99}}{(1+\frac{1}{2})×(1+\frac{1}{3})×…×(1+\frac{1}{99})}$.

查看答案和解析>>

同步练习册答案