【题目】已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.
(1)如图1,若点D是AC中点,连接PC.
①写出BP,BD的长;
②求证:四边形BCPD是平行四边形.
(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.
【答案】(1)①BD=,BP=;②证明见解析;(2).
【解析】试题(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;
②证明DP∥BC,DP=BC即可;
(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x.在Rt△BDC中,可得x2=(4﹣x)2+22,推出x的值,从而得出DN的长.由△BDN∽△BAM,可得,由此求出AM.由△ADM∽△APE,可得,由此求出AE的长,可得EC的长,由此即可解决问题.
试题解析:解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB==.∵AD=CD=2,∴BD==.由翻折可知:BP=BA=.
②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.
(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x.在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=.∵DB=DA,DN⊥AB,∴BN=AN=.在Rt△BDN中,DN= =.由△BDN∽△BAM,可得,∴,∴AM=2,∴AP=2AM=4.由△ADM∽△APE,可得,∴,∴AE=,∴EC=AC﹣AE=4﹣=.易证四边形PECH是矩形,∴PH=EC=.
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,1),B(-2,3),线段AB与y轴相交于点C.
(1)求△AOB的面积;
(2)求点C的坐标;
(3)请直接写出直线AB与x轴的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:
商品 | 红枣 | 小米 |
规格 | 1kg/袋 | 2kg/袋 |
成本(元/袋) | 40 | 38 |
售价(元/袋) | 60 | 54 |
根据上表提供的信息,解答下列问题:
(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;
(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
商店经营有A、B两种品牌的笔,A种笔的单价比B种笔的单价贵2元,若花140买A种笔,120元买B种笔,则A种笔反而比B种笔少一支.
(1)求A、B两种品牌的笔每支各多少元.
(2)某单位准备一次性购买两种笔共200支,预计费用不超过1800元.并且规定,A种笔的数量不能少于B种笔的.问如何购买,单位花钱最少?最少花多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某九年一贯制学校在六年级和九年级的男生中分别随机抽取40名学生测量他们的身高,将数据分组整理后,绘制的频数分布直方图如下:其中两条纵向虚线上端的数值分别是每个年级抽出的40名男生身高的平均数,根据统计图提供的信息,下列结论不合理的是( )
A. 六年级40名男生身高的中位数在第153~158cm组
B. 可以估计该校九年级男生的平均身高比六年级的平均身高高出18.6cm
C. 九年级40名男生身高的中位数在第168~173cm组
D. 可以估计该校九年级身高不低于158cm但低于163cm的男生所占的比例大约是5%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,现将一直角三角形放入图中,其中,交于点,交于点.
(1)当所放位置如图一所示时,则与的数量关系为 ;
(2)当所放位置如图二所示时,试说明:;
(3)在(2)的条件下,若与交于点,且,,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点A(0,a),点B(b,0),其中a,b满足=0,点C(m,n)在第一象限,已知是2的立方根.
(1)直接写出A,B,C三点的坐标;
(2)求出△ABC的面积;
(3)如图2,延长BC交y轴于D点,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是________.
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com