精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.

(1)求证:DA=DE;
(2)如果AF∥CD,请判断四边形ADEF是什么特殊的四边形,并证明您的结论.
(1)△BDA全等于△BDE,即可;(2)菱形

试题分析:
1.∵AD∥BC∴∠ADB=∠CBD
∵BC=CD∴∠CDB=∠CBD∴∠ADB=∠EDB
又BD=BD∴Rt△ADB≌Rt△EDB∴AD=ED
2.∵AF∥CD∴∠AFD=∠EDF=∠ADF
∴AF=AD=ED  又∵AF∥ED∴四边形ADEF是平行四边形
又∵AD=ED∴四边形ADEF是菱形
点评:本题难度中等,主要考查学生对四边形性质知识点的掌握,注意培养数形结合思想的掌握,运用到考试中去。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小明遇到这样一个问题:如图1,在边长为的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积。小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:

(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为       
(2)求正方形MNPQ的面积。参考小明思考问题的方法,解决问题:
(3)如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若,则AD的长为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为( )
A.13B.15C.13或15D.15或16或17

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知菱形的对角线的长分别为于点,则的长是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD的对角线AC、BD相交于点O,若AD=2,∠AOB=120°,则CD=    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.

(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;
(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);
(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,矩形ABCD中,延长BC至E,使BE = BD,F为DE的中点,连结AF、CF.

(1)若AB = 3,AD = 4,求CF的长;
(2)求证:∠ADB = 2∠DAF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,,过上到点的距离分别为:的点作的垂线与相交,得到并标出一组黑色梯形,它们的面积分别为.观察图中的规律,第n(n为正整数)个黑色梯形的面积     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,□ABCD中,过点B作BG∥AC,在BG上取一点E,连结DE交AC的延长线于点F.

(1)求证:DF=EF;
(2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长.

查看答案和解析>>

同步练习册答案