精英家教网 > 初中数学 > 题目详情

如图所示,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若花园的BC边长为x米,花园的面积为y(m2

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值;若不能,说明理由;
(3)请结合题意,判断当x取何值时,花园的面积最大?

(1)(0<x≤15);
(2)花园面积不能达到200,理由见解析;
(3)当x=15时,花园面积最大.

解析试题分析:(1)已知矩形的长和周长可表示宽,运用公式表示面积,根据墙宽得x的取值范围;
(2)求当y=200时x的值,根据自变量的取值范围回答问题;
(3)根据函数关系式运用性质求最值.
试题解析:(1)根据题意得: (0<x≤15)
(2)不能
,解得:>15,
∴花园面积不能达到200;
(3)∵=
∴函数图象顶点为(20,200)且开口向下,∴当x<20时,
y随x的增大而增大,而0<x≤15
∴当x=15时,y最大,即x=15m时,花园面积最大.
考点:二次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,二次函数的图象过A(-1,-2)、B(1,0)两点.

(1)求此二次函数的解析式并画出二次函数图象;
(2)点P(t,0)是x轴上的一个动点,过点P作x轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.

(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.

(1)求b,c的值.
(2)结合函数的图象探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).
(1)试写出y与x之间的函数关系式(不写x的取值范围);
(2)试写出z与x之间的函数关系式(不写x的取值范围);
(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=x2+bx+c经过(2,-1)和(4,3)两点.
(1)求出这个抛物线的解析式;
(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为             .

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与一次函数的图象交于两点. C为二次函数图象的顶点.

(1)求二次函数的解析式;
(2)定义函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,若y1≠y2,函数f的函数值等于y1、y2中的较小值;若y1=y2,函数f的函数值等于y1(或y2).” 当直线(k >0)与函数f的图象只有两个交点时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线与x轴交于点A、B(A左B右),其中点B的坐标为(7,0),设抛物线的顶点为C.

(1)求抛物线的解析式和点C的坐标;
(2)如图1,若AC交y轴于点D,过D点作DE∥AB交BC于E.点P为DE上一动点,PF⊥AC于F,PG⊥BC于G.设点P的横坐标为a,四边形CFPG的面积为y,求y与a的函数关系式和y的最大值;
(3)如图2,在条件(2)下,过P作PH⊥x轴于点H,连结FH、GH,是否存在点P,使得△PFH与△PHG相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0).

(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.
当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)

查看答案和解析>>

同步练习册答案