精英家教网 > 初中数学 > 题目详情

已知抛物线y=x2+bx+c经过(2,-1)和(4,3)两点.
(1)求出这个抛物线的解析式;
(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为             .

(1);(2)

解析试题分析:(1)将(2,-1)、(4,3)代入y=x2+bx+c,即可解出b、c的值,从而得到函数的解析式;
(2)根据平移规律,将函数的顶点式进行变化,得到函数解析式,再展成一般式即可.
试题解析:(1) ∵抛物线过(2,-1)和(4 , 3)两点,


∴这个抛物线的解析式为.
(2)新抛物线的解析式为
考点: 1.待定系数法求二次函数解析式;2.二次函数的性质;3.二次函数图象与几何变换.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

以直线为对称轴的抛物线轴交于A、B两点,其中点A的坐标为.
(1)求点B的坐标;
(2)设点M、N在抛物线线上,且,试比较的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A.D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内。

(1)求二次函数的解析式;
(2)设点D的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

二次函数y=ax²-6ax+c(a>0)的图像抛物线过点C(0,4),设抛物线的顶点为D。

(1)若抛物线经过点(1,-6),求二次函数的解析式;
(2)若a=1时,试判断抛物线与x轴交点的个数;
(3)如图所示A、B是⊙P上两点,AB=8,AP=5。且抛物线过点A(x1,y1),B(x2,y2),并有AD=BD。设⊙P上一动点E(不与A、B重合),且∠AEB为锐角,若<a≤1时,请判断∠AEB与∠ADB的大小关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若花园的BC边长为x米,花园的面积为y(m2

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值;若不能,说明理由;
(3)请结合题意,判断当x取何值时,花园的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:二次函数的图象开口向上,并且经过原点.
(1)求的值;
(2)用配方法求出这个二次函数图象的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:已知二次函数的图象对称轴为,且过点B(-1,0).求此二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数
(1)若点在此二次函数的图象上,则     (填 “>”、“=”或“<”);
(2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与y轴交于点A,抛物线上的一点P在第四象限,连接AP与x轴交于点C,,且S△AOC=1,过点P作PB⊥y轴于点B.

(1)求BP的长;
(2)求抛物线与x轴的交点坐标.

查看答案和解析>>

同步练习册答案