以直线为对称轴的抛物线与轴交于A、B两点,其中点A的坐标为.
(1)求点B的坐标;
(2)设点M、N在抛物线线上,且,试比较、的大小.
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=的图像经过B、C两点.
(1)求该二次函数的解析式;
(2)结合函数的图像探索:当y>0时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数: .
(1)李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
抛物线y=-与y轴交于(0,3),
⑴求m的值;
⑵求抛物线与x轴的交点坐标及顶点坐标;
⑶当x取何值时,抛物线在x轴上方?
⑷当x取何值时,y随x的增大而增大?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系xOy中,二次函数的图象过A(-1,-2)、B(1,0)两点.
(1)求此二次函数的解析式并画出二次函数图象;
(2)点P(t,0)是x轴上的一个动点,过点P作x轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数.
(1)试求y与x的函数关系式;
(2)为了使每月获得利润为144元,问商品应定为每件多少元?
(3)为了获得了最大的利润,商品应定为每件多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).
(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);
(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含的代数式表示);
(3)当(2)中 的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
(1)存放x天后,将这批核桃一次性出售,如果这批核桃的销售总金额为y元,试求出y与x之间的函数关系式;
(2)如果仓库存放这批核桃每天需要支出各种费用合计340元,李经理要想获得利润22 500元,需将这批核桃存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线y=x2+bx+c经过(2,-1)和(4,3)两点.
(1)求出这个抛物线的解析式;
(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com