精英家教网 > 初中数学 > 题目详情

二次函数y=ax²-6ax+c(a>0)的图像抛物线过点C(0,4),设抛物线的顶点为D。

(1)若抛物线经过点(1,-6),求二次函数的解析式;
(2)若a=1时,试判断抛物线与x轴交点的个数;
(3)如图所示A、B是⊙P上两点,AB=8,AP=5。且抛物线过点A(x1,y1),B(x2,y2),并有AD=BD。设⊙P上一动点E(不与A、B重合),且∠AEB为锐角,若<a≤1时,请判断∠AEB与∠ADB的大小关系,并说明理由。

(1) ;(2)当0<a<0.5时,∠AEB <∠ADB ;当a=0.5时,∠AEB =∠ADB ;当0.5<a≤1时,∠AEB >∠ADB.

解析试题分析:(1)把C(0,4)、(1,-6)代入y=ax²-6ax+c,可求a、c的值,即可确定函数解析式;
(2)若 a=1时,计算出△的值,即可判断抛物线与x轴交点的个数;
(3)由二次函数方程算出对称轴为x=3,顶点D为(3,4-9a)。因为AD=BD,所以⊿ADB是等腰三角形且对称轴垂直平分AB。因为AB=8,所以A,B的横坐标分别为-1和7,纵坐标同为4+7a,所以⊿ADB的高就是A(或B)与D的纵坐标之差16a.因为∠AEB为锐角,所以E点在线段AB的下方(在上方则是钝角),由于弧AB所对的圆周角都相等,不妨就让△AEB为一个等腰三角形,即E的横坐标为3.过E做AB的垂线,必过圆心P,所以△AEB的高为8.
所以,比较16a和8的大小就行。当0<a<0.5时,∠AEB <∠ADB ;当a=0.5时,∠AEB =∠ADB ;当0.5<a≤1时,∠AEB >∠ADB.
试题解析:(1)把C(0,4)、(1,-6)代入y=ax²-6ax+c,得:
,解得:
所以二次函数的解析式为:.
(2)当a=1时,
△=(-6)2-4c=36-4c
(i)当36-4c>0,即c<9时,抛物线与x轴交点的个数有2个;
(ii)当36-4c=0,即c=9时,抛物线与x轴交点的个数有1个;
(iii)36-4c<0,即c>9时,抛物线与x轴没有交点;
(3)当0<a<0.5时,∠AEB <∠ADB ;当a=0.5时,∠AEB =∠ADB ;当0.5<a≤1时,∠AEB >∠ADB.
考点: 二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

抛物线y=-与y轴交于(0,3),
⑴求m的值;
⑵求抛物线与x轴的交点坐标及顶点坐标;
⑶当x取何值时,抛物线在x轴上方?
⑷当x取何值时,y随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
(1)存放x天后,将这批核桃一次性出售,如果这批核桃的销售总金额为y元,试求出y与x之间的函数关系式;
(2)如果仓库存放这批核桃每天需要支出各种费用合计340元,李经理要想获得利润22 500元,需将这批核桃存放多少天后出售?(利润=销售总金额-收购成本-各种费用)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:

 
每件T恤的利润(元)
销售量(件)
第一个月
 
 
清仓时
 
 
(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.

(1)求b,c的值.
(2)结合函数的图象探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=x2+bx+c经过(2,-1)和(4,3)两点.
(1)求出这个抛物线的解析式;
(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为             .

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)

查看答案和解析>>

同步练习册答案