精英家教网 > 初中数学 > 题目详情
(2000•陕西)如图,要测量小山上电视塔BC的高度,从山脚下A点测得AC=820m,塔顶B的仰角α=30°,山坡的倾角β=18°,求电视塔的高(精确到1m).
(参考数据:sin30°=0.50,cos30°=0.87,tan30°=0.58,cot30°=1.73,sin18°=0.31,cos18°=0.95,tan18°=0.32,cot18°=3.08)

【答案】分析:在Rt△ACD中,已知了仰角∠CAD(即β)的度数及斜边AC的长,可通过解直角三角形求得AD、CD的长;进而可根据AD的长及仰角∠BAD(即α)的度数在Rt△ABD中求得BD的长,由BC=BD-CD即可求得电视塔BC的高度.
解答:解:Rt△ACD中,∠CAD=β=18°,AC=820m,则有:
CD=AC•sinβ=AC•sin18°=820×0.31=254.2;(2分)
AD=AC•cosβ=AC•cos18°=820×0.95=779;(4分)
Rt△ABD中,∠BAD=30°,AD=779m,则有:
BD=AD•tanα=AD•tan30°=779×0.58=451.8;(7分)
∴BC=BD-CD=197.6≈198(m).
答:电视塔高为198m.(9分)
点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.当两个直角三角形有公共边时,先求出这条公共边是解答此类题目的基本出发点.
练习册系列答案
相关习题

科目:初中数学 来源:2000年陕西省中考数学试卷(解析版) 题型:解答题

(2000•陕西)如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=x+2上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2000•陕西)如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=x+2上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(2000•陕西)如图,已知弦AB等于半径,连接OB并延长使BC=OB.
(1)求证:AC是⊙O的切线;
(2)请你在⊙O上选取一点D,使得AD=AC.(自己完成作图,并给出证明过程)

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《四边形》(02)(解析版) 题型:解答题

(2000•陕西)如图,在矩形ABCD中,EF是BD的垂直平分线,已知BD=20,EF=15,求矩形ABCD的周长.

查看答案和解析>>

同步练习册答案