精英家教网 > 初中数学 > 题目详情

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=数学公式,现将△ABC绕着点C逆时针旋转α(45°<α<135°)得到△DCE,设直线DE与直线AB相交于点P,连接CP.

(1)当CD⊥AB时(如图1),求证:PC平分∠EPA;
(2)当点P在边AB上时(如图2),求证:PE+PB=6;
(3)在△ABC旋转过程中,连接BE,当△BCE的面积为数学公式时,求∠BPE的度数及PB的长.

解:(1)过C点作CN⊥DE垂足为N,
∵△ABC≌△DEC,∴AB=DE.
∵S△ABC=AB•CF=S△DCE=DE•CN,
∵CF=CN,
∴CP平分∠EPA.

(2)如图2在PA上截取PM=PE连接CM,过C作CK⊥PA,
由(1)同理可证CP平分∠EPA,
∴∠EPC=∠APC.
∵PM=PB PC=PC,
∴△PMC≌△PEC,
∴CE=CM,PE=PM.
又∵CE=CB,
∴CM=CB=5,且CK⊥PA,
∴K为BM的中点,即BK=BM,
在△BCK中,
在△ABC中,



∴BM=6.
∵BM=PM+PB,
∴PM+PE=6.

(3)如图3,∵△BCE的面积为,BC=5,
∴BE=BC=5,∠CED=∠PBC,∠ECB=60°,
∴∠BPE=60°.
过B点BH⊥PE,设BP=x,
∵PE+BP=6,
∴PE=6-x,PH=x,BH=x.


∴∠BPC=120°,
∴BP<BC,


如图4,当△BEC为钝角三角形时,同理可得BE=5,PE-PB=6,
∵PE=6+x,∠BPE=60°,x=-3±4
∵-3-4<0,
∴x=4-3.

分析:(1)根据旋转前后三角形的面积不变作为相等关系得到CF=CN,从而判定CP平分∠EPA;
(2)作辅助线构造全等三角形,利用全等的性质和三角函数求解.在PA上截取PM=PE连接CM,过C作CK⊥PA得出,CM=CB=5,再利用三角函数求出BM=6,所以得到PM+PE=6;
(3)要注意有2种情况,△BEC为锐角三角形时和△BEC为钝角三角形时两种,不要漏掉.主要利用直角三角形的勾股定理作为等量关系解方程求线段的长度.
点评:本题考查旋转相等的性质和解直角三角形的运用,要掌握旋转的性质:对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.求m的值及AC、BC的长(BC>AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

查看答案和解析>>

同步练习册答案