精英家教网 > 初中数学 > 题目详情

如图,已知四边形ABCD是边长为2的菱形,点E、B、C、F都在以O为圆心的同一圆弧上,且∠ADE=∠CDF,那么数学公式的长度等于________.(结果保留π)


分析:B,C两点恰好落在扇形AEF的上,即B、C在同一个圆上,连接AC,易证△BDC是等边三角形,即可求得的圆心角的度数,根据∠ADE=∠CDF可知∠ADC=∠EDF,即可证明的长=2,然后利用弧长公式即可求解.
解答:连接BD,
∵菱形ABCD中,DC=BC,
又∵BD=DC,
∴BD=DC=BC,即△DBC是等边三角形.
∴∠BDC=60°,
==
∵∠ADE=∠CDF,
∴∠ADC=∠EDF,
∵∠ADC=2∠BDC,
∴∠EDF=2∠BDC,
=2=2×=
点评:本题考查了弧长公式,理解B,C两点恰好落在扇形AEF的上,即B、C在同一个圆上,得到△BDC是等边三角形是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案