精英家教网 > 初中数学 > 题目详情
1.解不等式组$\left\{\begin{array}{l}{2x+1≥0}\\{\frac{x+5}{3}-\frac{x}{2}>1}\end{array}\right.$,并把解集在是数轴上表示出来.

分析 分别求出各不等式的解集,并在数轴上表示出来即可.

解答 解:$\left\{\begin{array}{l}{2x+1≥0①}\\{\frac{x+5}{3}-\frac{x}{2}>1②}\end{array}\right.$,由①得,x≥-$\frac{1}{2}$,
由②得,x<4,
故不等式组的解集为:-$\frac{1}{2}$≤x<4.
在数轴上表示为:

点评 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.取一张正方形的纸片进行折叠,具体操作过程如下:
第一步:如图1,先把正方形ABCD对折,折痕为MN.
第二步:点G在线段 MD上,将△GCD沿GC翻折,点D恰好落在MN上,记为点P,连接BP.
(1)判断△PBC的形状,并说明理由;
(2)作点C关于直线AP的对称点C′,连接PC′、DC′.
①在图2中补全图形,并求出∠APC′的度数;
②猜想∠PC′D的度数,并加以证明;(温馨提示:当你遇到困难时,不妨连接AC′、CC′,研究图形中特殊的三角形)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,点P为∠AOB平分线上的一点,PC⊥OB于点C,且PC=4,点P到OA的距离为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF,将纸片ACB的一角沿EF折叠.
(1)如图①,若折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△AEF,则AE=$\frac{5}{2}$;
(2)如图②,若折叠后点A落在BC边上的点M处,且使MF∥CA.求AE的长;
(3)如图③,若折叠后点A落在BC延长线上的点N处,且使NF⊥AB.求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,矩形ABCD的顶点B坐标为(5,4),直线y=2x-3分别交x轴、y轴于D、E点,若线段BC上有一点P,直线DE上有一点Q,△APQ是以AP为斜边的等腰直角三角形,则点P坐标为(5,1)或(5,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:据统计图解答下列问题:
(1)同学们一共调查了多少人?
(2)将条形统计图补充完整.
(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?
(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.一个口袋中装有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸出两个球,则摸出两个小球标号的和等于5的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,直线AB与x轴交于点B、与y轴交于点A,与反比例函数y=$\frac{m}{x}$的图象在第二象限交于C,CE⊥x轴,垂足为点E,tan∠ABO=$\frac{1}{2}$,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限内的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.
(3)若动点D在反比例函数图象的第四象限上运动,当线段DC与线段DB之差达到最大时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,点 O是△ABC外接圆的圆心,若⊙O的半径为5,∠A=45°,则$\widehat{BC}$的长是(  )
A.$\frac{5}{8}$πB.$\frac{25}{4}$πC.$\frac{5}{4}$πD.$\frac{5}{2}$π

查看答案和解析>>

同步练习册答案