【题目】如图,小明从路灯下A处向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是( )
A.4米
B.5.6米
C.2.2米
D.12.5米
【答案】B
【解析】解:由图知,DE=2米,CD=1.6米,AD=5米, ∴AE=AD+DE=5+2=7米
∵CD∥AB,
∴△ECD∽△EBA
∴ = ,即 = ,
解得AB=5.6(米).
故选B.
【考点精析】认真审题,首先需要了解相似三角形的应用(测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解),还要掌握中心投影(手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影;作一物体中心投影的方法:过投影中心与物体顶端作直线,直线与投影面的交点与物体的底端之间的线段即为物体的影子)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0与矩形两边AB、BC分 别交于点D、E,且BD=2AD﹒
(1)求此双曲线的函数表达式及点E的坐标;
(2)若矩形OABC的对角线OB与双曲线相交于点P,连结PC,求△POC的面积﹒
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(1,6)和点B在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求反比例函数的表达式和点B的坐标;
(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,以AC为直径的⊙O分别交AB,BC于点D,E,点F在AB的延长线上,2∠BCF=∠BAC.
(1)求∠ADE的度数.
(2)求证:直线CF是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,AC为对角线,点E为AC上一点,连接EB,ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于点F,当∠BED=120°时,求∠EFD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是( )
A.6
B.3
C.9
D.4.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣4,﹣2,1,8,且任意相邻四个台阶上数的和都相等.
尝试:(1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数x是多少?
应用: 求从下到上39个台阶上数的和.
发现:试用含k(k为正整数)的代数式表示出数“1”所在的台阶数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一次函数y=kx+b的图象如图所示,则k,b的值可能为( )
A.k=3,b=3
B.k=3,b=﹣3
C.k=﹣3,b=3
D.k=﹣3,b=﹣3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com