精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
错误的个数有【   】
A.1个B.2个C.3个D.4个
B。
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象将x=1,﹣1,2代入函数解析式判断y的值,进而对所得结论进行判断:
①∵由函数图象开口向下可知,a<0,由函数的对称轴<0得b>0,∴2a﹣b<0,①正确;
②∵a<0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c<0,∴abc<0;②正确;
③当x=1时,y=a+b+c<0,③正确;
④当x=﹣1时,y=a﹣b+c<0,④错误;
⑤当x=2时,y=4a+2b+c<0,⑤错误;
故错误的有2个。故选B。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知函数轴交点是,则的值是(    )
A.2014B.2013C.2012D.2011

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知抛物线的对称轴为,点A,B均在抛物线上,且与x轴平行,其中点的坐标为(n,3),则点的坐标为(    ).
A.(n+2,3)B.(,3)C.(,3)D.(,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x
﹣3
﹣2
﹣1
0
1
2
3
4
5
y
12
5
0
﹣3
﹣4
﹣3
0
5
12
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A.3      B.2      C.1      D.0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数 (a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是
A.a>0B.b2-4ac≥0
C.x1<x0<x2D.a(x0-x1)( x0-x2)<0

查看答案和解析>>

同步练习册答案