精英家教网 > 初中数学 > 题目详情
如图,已知抛物线的对称轴为,点A,B均在抛物线上,且与x轴平行,其中点的坐标为(n,3),则点的坐标为(    ).
A.(n+2,3)B.(,3)C.(,3)D.(,3)
C

试题分析:二次函数的图像关于对称轴对称抛物线的对称轴为,点均在抛物线上,且轴平行,其中点的坐标为(n,3),则点的横坐标为,纵坐标与点A的纵坐标相同.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线.
(1)通过配方,将抛物线的表达式写成的形式(要求写出配方过程);
(2)求出抛物线的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,要设计一个矩形的花坛,花坛长60 m,宽40 m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10 m,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m.(π的值取3)

(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的多36 m2时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点A的坐标为(,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.

(1)请直接写出点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)如果点P是(2)中的抛物线上的动点,且在x轴的上方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为   m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
错误的个数有【   】
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的最小值是     

查看答案和解析>>

同步练习册答案