精英家教网 > 初中数学 > 题目详情
已知二次函数.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。
解:(1)∵二次函数的图象经过坐标原点O(0,0),
∴代入得:,解得:m=±1。
∴二次函数的解析式为:
(2)∵m=2,∴二次函数为:
∴抛物线的顶点为:D(2,-1)。
当x=0时,y=3,
∴C点坐标为:(0,3)。
(3)存在,当P、C、D共线时PC+PD最短。
过点D作DE⊥y轴于点E,

∵PO∥DE,∴△COP∽△CED。
,即,解得:
∴PC+PD最短时,P点的坐标为:P(,0)。

试题分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可。
(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可。
(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线交于C,D两点,其中点C在y轴上,点D的坐标为。点P是y轴右侧的抛物线上一动点,过点P作轴于点E,交CD于点F.

(1)求抛物线的解析式;
(2)若点P的横坐标为m,当m为何值时,以O,C,P,F为顶点的四边形是平行四边形?请说明理由。
(3)若存在点P,使,请直接写出相应的点P的坐标

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.

(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是【   】
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=2x2的对称轴为               

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知抛物线的对称轴为,点A,B均在抛物线上,且与x轴平行,其中点的坐标为(n,3),则点的坐标为(    ).
A.(n+2,3)B.(,3)C.(,3)D.(,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线向左平移2个单位,再向下平移1个单位,所得抛物线为
A. B.
C.  D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数 (a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是
A.a>0B.b2-4ac≥0
C.x1<x0<x2D.a(x0-x1)( x0-x2)<0

查看答案和解析>>

同步练习册答案