【题目】如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E,F分别是AC,BC的中点,直线EF与⊙O交于点G,H.若⊙O的半径为2,则GE+FH的最大值为 .
【答案】4﹣
【解析】解:连接OA,OB,
∵∠ACB=45°,
∴∠AOB=90°.
∵OA=OB,
∴△AOB是等腰直角三角形,
∴AB=2 ,
当GH为⊙O的直径时,GE+FH有最大值.
∵点E、F分别为AC、BC的中点,
∴EF= AB= ,
∴GE+FH=GH﹣EF=4﹣ ,
故答案为:4﹣ .
接OA,OB,根据圆周角定理可得出∠AOB=90°,故△AOB是等腰直角三角形.由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF= AB= 为定值,则GE+FH=GH﹣EF=GH﹣ ,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值,问题得解.
科目:初中数学 来源: 题型:
【题目】某公司今年销售一种产品,1月份获得利润20万元.由于产品畅销.利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.设这个增长率为x
(1)填空:(用含x的代数式表示)
①2月份的利润为:______
②3月份的利润为:______
(2)列出方程,并求出问题的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.
(1)这个几何体由 个小正方体组成,请画出这个几何体的三视图;
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色;
(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的不等式为y=﹣x2+6x+c.
(1)若抛物线与x轴有交点,求c的取值范围;
(2)设抛物线与x轴两个交点的横坐标分别为x1 , x2 . 若x12+x22=26,求c的值.
(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.
(1)求梯形ABCD的面积;
(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com