精英家教网 > 初中数学 > 题目详情
(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.
(1)求证:AC是⊙O的切线;
(2)若点E是
BD
的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.
分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线.
(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.
解答:解:(1)∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.

(2)∵△ADC∽△BAC(已证),
AC
BC
=
CD
AC
,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD=
AC2-CD2
=2
5

∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA-CD=2,
在Rt△AFD中,AF=
DF2+AD2
=2
6
点评:本题考查了切线的判定、相似三角形的判定与性质,解答本题的关键是熟练掌握切线的判定定理、相似三角形的性质,勾股定理的表达式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宜宾)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=
115°
115°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为
20
20

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足
CF
FD
=
1
3
,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:
①△ADF∽△AED;②FG=2;③tan∠E=
5
2
;④S△DEF=4
5

其中正确的是
①②④
①②④
(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,抛物线y1=x2-1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.
(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案