【题目】在△ABC中,,设c为最长边.当时,△ABC是直角三角形;当时,利用代数式和的大小关系,可以判断△ABC的形状(按角分类).
(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为____三角形;当△ABC三边长分别为6,8,11时,△ABC为______三角形.
(2)小明同学根据上述探究,有下面的猜想:“当时,△ABC为锐角三角形;当时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:
当,时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形?
【答案】(1)锐角,钝角;(2)当4≤c<时,这个三角形是锐角三角形;当c=时,这个三角形是直角三角形;当<c<6时,这个三角形是钝角三角形.
【解析】(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;
(2)根据三角形的任意两边之和大于第三边求出最长边c点的最大值,然后得到c的取值范围,然后分情况讨论即可得解.
解:
(1)∵两直角边分别为6、8时,斜边==10,
∴△ABC三边分别为6、8、9时,△ABC为锐角三角形;
当△ABC三边分别为6、8、11时,△ABC为钝角三角形;
故答案为:锐角;钝角;
(2)∵c为最长边,2+4=6,
∴4c<6,
a2+b2=22+42=20,
①a2+b2>c2,即c2<20, 4≤c<,
∴当4c<时,这个三角形是锐角三角形;
②a2+b2=c2,即c2=20,c=,
∴当c=时,这个三角形是直角三角形;
③a2+b2<c2,即c2>20,c>,
∴当<c<6时,这个三角形是钝角三角形.
科目:初中数学 来源: 题型:
【题目】将抛物线y=(x﹣1)2+1向下平移1个单位,所得新抛物线的解析式为( )
A.y=(x﹣1)2+2
B.y=(x﹣1)2
C.y=(x﹣2)2+1
D.y=x2+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式中,去括号或添括号正确的是( )
A. a2﹣(2a﹣b+c)=a2﹣2a﹣b+c
B. ﹣2x﹣t﹣a+1=﹣(2x﹣t)+(a﹣1)
C. 3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1
D. a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
当A、B两点都不在原点时,如图2,点A、B都在原点的右边
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;
如图3,当点A、B都在原点的左边,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;
如图4,当点A、B在原点的两边,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;
回答下列问题:
(1)数轴上表示1和6的两点之间的距离是 ,数轴上表示2和-3的两点之间的距离是 ;
(2)数轴上若点A表示的数是x,点B表示的数是-4,则点A和B之间的距离是 ,若∣AB∣=3,那么x为 ;
(3)当x是 时,代数式;
(4)若点A表示的数,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,点Q与点P 相距1个单位?(请写出必要的求解过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
A | B | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com