精英家教网 > 初中数学 > 题目详情

已知关于x的方程x2+mx+4=0有两个正整数根,则m可能的值是


  1. A.
    m>0
  2. B.
    m>4
  3. C.
    4或5
  4. D.
    -4或-5
D
分析:方程有两个正整数根,说明根的判别式△=b2-4ac≥0,即m2-4×1×4≥0,由此可以求出m的取值范围,然后根据方程有两个正整数根确定m的值.
解答:∵关于x的一元二次方程x2+mx+4=0有两个正整数根,
∴△=b2-4ac≥0,即m2-4×1×4≥0,
∴m2≥16,
解得m≥4或m≤-4,
∵方程的根是x=
又因为是两个正整数根,则m<0
则m≤-4
故A、B、D一定错误.
C,把m=-4和-5代入方程的根是x=,检验都满足条件.
∴m可能取的值为-4,-5.
故选D.
点评:此题主要考查了根的判别式,利用一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.
正确确定m的范围,并进行正确的检验是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案