精英家教网 > 初中数学 > 题目详情

平面上5个圆最多能把平面分成多少个部分?一般地,n个圆最多能把平面分成多少个部分?

解:一个圆最多能把平面分成2个部分,
2个圆最多能把平面分成4个部分;
3个圆最多能把平面分成8个部分;
现在加入第4个圆,为了使分成的部分最多,第4个圆必须与前面3个圆都有两个交点,
如图所示,因此得6个交点将第4个圆的圆周分成6段圆弧,而每一段圆弧将原来的部分一分为二,即增加了一个部分,于是4个圆最多将平面分成8+6=14个部分,
同理,5个圆最多将平面分成14+8=22个部分,
一般地,n个圆最多分平面为:
2+1×2+2×2+…+(n-1)×2,
=2+2[1+2+…+(n-1)],
=n2-n+2.
分析:运用2个圆最多能把平面分成4个部分;3个圆最多能把平面分成8个部分;现在加入第4个圆,为了使分成的部分最多,第4个圆必须与前面3个圆都有两个交点,画出图形,得出第4个图形分成平面的个数,分析数据得出一般规律,得出答案.
点评:此题主要考查了数的规律,关键是分平面找出最多时数据之间的关系,这是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

1、填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出
21
条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形
7
个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有
5
个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是
14

(5)平面上10条直线最多能把平面分成
56
个部分.
(6)平面上10个圆最多能把平面分成
92
个区域.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、平面上5个圆最多能把平面分成多少个部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

23、平面上5个圆最多能把平面分成多少个部分?一般地,n个圆最多能把平面分成多少个部分?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出______条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形______个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有______个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是______.
(5)平面上10条直线最多能把平面分成______个部分.
(6)平面上10个圆最多能把平面分成______个区域.

查看答案和解析>>

同步练习册答案