精英家教网 > 初中数学 > 题目详情

【题目】如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有(

A. 一处 B. 二处 C. 三处 D. 四处

【答案】D

【解析】

由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.

∵△ABC内角平分线的交点到三角形三边的距离相等,

∴△ABC内角平分线的交点满足条件;

如图:

PABC两条外角平分线的交点,

过点PPEAB,PDBC,PFAC,

PE=PF,PF=PD,

PE=PF=PD,

∴点PABC的三边的距离相等,

∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;

综上,到三条公路的距离相等的点有4个.

∴可供选择的地址有4个.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.

(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;

(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABD和△AEC中,AD=ABAE=ACDAB=EAC=60°,CDBE相交于点P

(1)用全等三角形判定方法证明:BEDC

(2)求∠BPC的度数;

(3)在(2)的基础上,经过深入探究后发现:射线AP平分∠BPC,请判断你的发现是否正确,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△DCE都是等边三角形,BCE三点在同一条直线上,若AB=6,BAD=150°,则DE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量某交通路口设立的路况显示牌的立杆AB的高度,在D处用高1.2m的测角仪CD,测得最高点A的仰角为32°,已知观测点D到立杆AB的距离DB为3.8m,求立杆AB的高度.(结果精确到0.1m)
【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥ABE,FAC上,BD=DF;

证明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC由△A′B′C′绕O点旋转180°而得到,则下列结论不成立的是( )

A.点A与点A′是对应点
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AD,AC=5,DAB=DCB=90°,则四边形ABCD的面积为(  )

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC与点O在10×10的网格中的位置如图所示

(1)画出△ABC绕点O逆时针旋转90°后的图形;
(2)画出△ABC绕点O逆时针旋转180°后的图形;
(3)若⊙M能盖住△ABC,则⊙M的半径最小值为多少?

查看答案和解析>>

同步练习册答案