分析 (1)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;
(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.
解答 解:(1)EF=BE+CF.
理由:∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴EF=BE+CF.
(2)EF=BE-CF,
理由:∵BO平分∠ABC,CO平分∠ACD,
∴∠EBO=∠OBC,∠FCO=∠OCD,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCD,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴EF=BE-CF.
点评 本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,关键是推出BE=OE,CF=OF.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com