【题目】抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若P(1,-3)、B(4,0),
① 求该抛物线的解析式;
② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2) 如图2,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
【答案】(1)①y=x2-;②点D的坐标为(-1,-3)或(,);(2)是定值,等于2.
【解析】
试题分析:(1)①将P(1,-3)、B(4,0)代入y=ax2+c得方程组,解方程组即可求得a、c的值,就求得函数解析式;②分两种情况求得点D的坐标即可;(2)设B(b,0),则A(-b,0)有ab2+c=0,即可得b2=,过点P(x0,y0)作PH⊥AB,有,利用相似三角形的性质分别求得OE、OF的值,即可得的值.
试题解析:(1)①将P(1,-3)、B(4,0)代入y=ax2+c得
,解得 ,抛物线的解析式为: .
②如图:
由∠DPO=∠POB得DP∥OB,D与P关于y轴对称,P(1,-3)得D(-1,-3);
如图,D在P右侧,即图中D2,则∠D2PO=∠POB,延长PD2交x轴于Q,则QO=QP,
设Q(q,0),则(q-1)2+32=q2,解得:q=5,∴Q(5,0),则直线PD2为 ,再联立 得:x=1或 ,∴ D2( )
∴点D的坐标为(-1,-3)或( )
(2)设B(b,0),则A(-b,0)有ab2+c=0,∴b2=,过点P(x0,y0)作PH⊥AB,有,易证:△PAH∽△EAO,则 即,∴,
同理得∴,∴,则OE+OF=
∴,又OC=-c,∴.
∴是定值,等于2.
科目:初中数学 来源: 题型:
【题目】将△ABC的三个顶点的纵坐标都乘以-1,横坐标不变,则所得图形与原图形的关系是( )
A. 关于x轴对称 B. 关于y轴对称
C. 关于原点对称 D. 将图形向x轴的负方向移动了1个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天,小华在一条东西方向的公路上行走,他从家里出发,如果把向东350米记作-350米,那么他折回来行走280米表示什么意思?这时,他停下来休息,休息的地方在他家的什么方向上?距家有多远?小华共走了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如下三个函数图象中,有两个函数图象能近似地刻画如下两个情境:
情境:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;
情境:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.
(1)情境, 所对应的函数图象分别为 , (填写序号).
(2)请你为剩下的函数图象写出一个适合的情境.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将函数y=-3x的图象沿y轴向上平移2个单位后,所得图象对应的函数表达式( )
A. y=-3(x+2)B. y=-3x-2C. y=-3x+2D. y=-3(x-2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5 km处,乙车位于雕像北方7 km处.若甲、乙两车以相同的速度向雕像方向同时驶去,当甲车到雕像西方1 km处时,乙车在()
A. 雕像北方1 km处 B. 雕像北方3 km处 C. 雕像南方1 km处 D. 雕像北方3 km处
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com