精英家教网 > 初中数学 > 题目详情

直线y=3x沿y轴正方向平移2个单位长度后得到的图象所对应的函数解析式是


  1. A.
    y=3x+2
  2. B.
    y=3x-2
  3. C.
    y=2x+3
  4. D.
    y=2x-3
A
分析:原常数项为0,沿y轴正方向平移2个单位长度是向上平移,上下平移直线解析式只改变常数项,让常数项加2即可得到平移后的常数项,也就得到平移后的直线解析式.
解答:∵沿y轴正方向平移2个单位长度,
∴新函数的k=3,b=0+2=2,
∴得到的直线所对应的函数解析式是y=3x+2.
故选A.
点评:考查的知识点为:上下平移直线解析式只改变常数项,上加,下减.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,直线y=-
3
x+2
3
与x轴、y轴分别交于点A和点B,D是y轴上的一点,若将△DAB沿直线DA折叠,点B恰好落在x轴正半轴上的点C处,求直线CD的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过原点的直线l1:y=3x,l2:y=
12
x.点P从原点O出发沿x轴正方向以每秒1个单位长度的速度运动.直线PQ交y轴正半轴于点Q,且分别交l1、l2于点A、B.设点P的运动时间为t秒时,直线PQ的解析式为y=-x+t.△AOB的面积为Sl(如图①).以AB为对角线作正方形ACBD,其面积为S2(如图②).连接PD并延长,交l1于点E,交l2于点F.设△PEA的面积为S3;(如图③)
精英家教网
(1)Sl关于t的函数解析式为
 
;(2)直线OC的函数解析式为
 

(3)S2关于t的函数解析式为
 
;(4)S3关于t的函数解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y=-
3
x+2
3
交x轴于点A,交y轴于点B,过B点的直线y=x+n交x轴于点C.精英家教网
(1)求C点的坐标;
(2)若将△OBC沿y轴翻折,C点落在x轴上的D点,过D作DE⊥BA垂足为E,过C作CF⊥BA垂足为F,交BO于G,试说明AE与FG的数量关系;
(3)以A点为圆心,以AB为半径作⊙A交x轴负半轴于点H,交x轴正半轴于点P,BA的延长线交⊙A于M,在
PM
上存在任一点Q,连接MQ并延长交x轴于点N,连接HQ交BM于S,现有两个结论 ①AN+AS的值不变; ②AN-AS的值不变,其中只有一个正确,请选择正确的结论进行证明,并求其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•缙云县模拟)已知在平面直角坐标系中,直线y=-
3
x+6
3
与x轴,y轴相交于A,B两点,直线y=
3
x
与AB相交于C点,点D从点O出发,以每秒1个单位的速度沿x轴向右运动到点A,过点D作x轴的垂线,分别交直线y=
3
x
和直线y=-
3
x+6
3
于P,Q两点(P点不与C点重合),以PQ为边向左作正△PQR,设正△PQR与△OBC重叠部分的面积为S(平方单位),点D的运动时间为t(秒)
(1)求点A,B,C的坐标; 
(2)若点M(2,3
3
)正好在△PQR的某边上,求t的值;
(3)求S关于t的函数关系式,并写出相应t的取值范围,求出D在整个运动过程中s的最大值.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》中考题集(47):20.5 二次函数的一些应用(解析版) 题型:解答题

如图,过原点的直线l1:y=3x,l2:y=x.点P从原点O出发沿x轴正方向以每秒1个单位长度的速度运动.直线PQ交y轴正半轴于点Q,且分别交l1、l2于点A、B.设点P的运动时间为t秒时,直线PQ的解析式为y=-x+t.△AOB的面积为Sl(如图①).以AB为对角线作正方形ACBD,其面积为S2(如图②).连接PD并延长,交l1于点E,交l2于点F.设△PEA的面积为S3;(如图③)

(1)Sl关于t的函数解析式为______;(2)直线OC的函数解析式为______;
(3)S2关于t的函数解析式为______;(4)S3关于t的函数解析式为______.

查看答案和解析>>

同步练习册答案