精英家教网 > 初中数学 > 题目详情

【题目】如图,已知⊙P与x轴交于A和B(9,0)两点,与y轴的正半轴相切与点C(0,3),作⊙P的直径BD,过点D作直线DE⊥BD,交x轴于E点,若点P在双曲线y= 上,则直线DE的解析式为

【答案】y= x+
【解析】解:连接PC.AD,过P作PE⊥AB于E, ∵C(0,3),B(9,0),
∴OB=9,OC=3,
∵⊙P与y轴的正半轴相切与点C,
∴PC⊥y轴,
∴四边形OEPC是矩形,
∴PE=OC=3,
把y=3代入y= 得,x=5,
∴P(5,3),
∴PC=5,BD=10,
∵BD是⊙P的直径,
∴AD⊥x轴,
∴PE∥AD,
∵P是BD的中点,
∴AD=6,
∴AB=8,
∴OA=1,
∴D(1,6),
∵DE⊥BD,
∴∠EDA+∠BDA=∠AED+∠EDA=90°,
∴∠AED=∠ADB,
∴△ADE∽△ABD,

∴AE=
∴E(﹣ ,0),
设直线DE的解析式为y=kx+b,


∴直线DE的解析式为y= x+
所以答案是:y= x+

【考点精析】通过灵活运用切线的性质定理,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E为AB的中点,F为AD上一点,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,则AC的长为(
A.9cm
B.14cm
C.15cm
D.18cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

(1)试说明DF是⊙O的切线;
(2)若AC=3AE=6,求tanC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是(
A.四边形ABCD由矩形变为平行四边形
B.BD的长度增大
C.四边形ABCD的面积不变
D.四边形ABCD的周长不变

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:

x

1

2

3

4

5

y

0

﹣3

﹣6

﹣6

﹣3

从上表可知,下列说法中正确的有(
=6;②函数y=ax2+bx+c的最小值为﹣6;③抛物线的对称轴是x= ;④方程ax2+bx+c=0有两个正整数解.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.

(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;
(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),
请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.

(1)求证:BD=CE;
(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.

查看答案和解析>>

同步练习册答案