精英家教网 > 初中数学 > 题目详情
某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.
(1)求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);
(2)已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?
(3)现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.

【答案】分析:(1)利用圆锥的弧长=圆锥的底面周长可得圆心角的度数;
(2)利用26个圣诞帽的个数列出相应的等量关系,可得y与x之间的函数关系式,然后取得整数解的最大值与最小值即可;
(3)算出正方形的面积及圆锥侧面积,让正方形的面积除以圆锥侧面积得到的整数解即为圣诞帽的个数,让扇形的顶点在正方形的四个顶点,扇形一边在正方形的一边即可;根据扇形的两条半径的和小于对角线的长,算出的∠MCP的度数和69°相加得90°即合适.
解答:解:(1)∵底面直径为16厘米,
∴圆锥的底面周长为16πcm,
∵圣诞帽的侧面展开图是一个扇形,
∴扇形的弧长是16π,
设扇形是圆心角为n,=16π,
解得n≈69,
则扇形的圆心角是69°;

(2),由y≥0,得x的最大值是,最小值是0.
显然,x、y必须取整数,才不会浪费纸张.
由x=1时,;x=2时,y=6;x=3时,
x=4时,x=5时,y=2;x=6时,
故A、B两种规格的纸片各买6张、2张或2张、5张时,才不会浪费纸张.
(3)正方形的面积为79×79=6241,圆锥的侧面展开图的面积为π×8×42≈1055,
∴可以截的扇形的个数为:6241÷1055≈5,但画出草图后可得只有4个.
裁剪草图,如图

设相邻两个扇形的圆弧相交于点P,则PD=PC,
过点P作DC的垂线PM交DC于M,
则CM=DC=×79=39.5,又CP=42,

∴∠MCP=20°<(90°-69°),
又42+42<79,所以这样的裁剪草图是可行的.
点评:用到的知识点为:圆锥的底面周长等于圆锥的侧面展开图的弧长;在较大的纸张上裁剪较小的图形,应从实际出发思考.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.
(1)求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);
(2)已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?
(3)现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.

⑴ 求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);

⑵ 已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?

⑶ 现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.

⑴ 求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);

⑵ 已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?

⑶ 现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.

 


查看答案和解析>>

科目:初中数学 来源:2012年广东省华师附中实验学校中考数学模拟试卷(一)(解析版) 题型:解答题

某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.
(1)求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);
(2)已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?
(3)现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.

查看答案和解析>>

同步练习册答案